Spaces:
Running
Running
import torch | |
from torch import Tensor | |
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _default_to_fused_or_foreach, | |
_get_scalar_dtype, _view_as_real, _differentiable_doc, _foreach_doc, _maximize_doc, | |
_capturable_doc) | |
from typing import List, Optional | |
__all__ = ["ASGD", "asgd"] | |
def _to_tensor(x, device=None): | |
if not isinstance(x, torch.Tensor): | |
return torch.tensor(x, device=device) | |
return x | |
class ASGD(Optimizer): | |
def __init__( | |
self, | |
params, | |
lr=1e-2, | |
lambd=1e-4, | |
alpha=0.75, | |
t0=1e6, | |
weight_decay=0, | |
foreach: Optional[bool] = None, | |
maximize: bool = False, | |
differentiable: bool = False, | |
capturable: bool = False, | |
): | |
if not 0.0 <= lr: | |
raise ValueError(f"Invalid learning rate: {lr}") | |
if not 0.0 <= weight_decay: | |
raise ValueError(f"Invalid weight_decay value: {weight_decay}") | |
defaults = dict( | |
lr=lr, | |
lambd=lambd, | |
alpha=alpha, | |
t0=t0, | |
weight_decay=weight_decay, | |
foreach=foreach, | |
maximize=maximize, | |
differentiable=differentiable, | |
capturable=capturable, | |
) | |
super().__init__(params, defaults) | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault("foreach", None) | |
group.setdefault("maximize", False) | |
group.setdefault("differentiable", False) | |
group.setdefault("capturable", False) | |
for p in group["params"]: | |
p_state = self.state.get(p, []) | |
if len(p_state) != 0: | |
if not torch.is_tensor(p_state['step']): | |
step_val = float(p_state["step"]) | |
p_state["step"] = torch.tensor(step_val, dtype=_get_scalar_dtype(), device=p.device) | |
if not torch.is_tensor(p_state["eta"]): | |
p_state["eta"] = torch.tensor(p_state["eta"], dtype=_get_scalar_dtype(), device=p.device) | |
if not torch.is_tensor(p_state["mu"]): | |
p_state["mu"] = torch.tensor(p_state["mu"], dtype=_get_scalar_dtype(), device=p.device) | |
def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps): | |
has_complex = False | |
for p in group["params"]: | |
if p.grad is not None: | |
has_complex |= torch.is_complex(p) | |
params_with_grad.append(p) | |
if p.grad.is_sparse: | |
raise RuntimeError("ASGD does not support sparse gradients") | |
grads.append(p.grad) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = torch.zeros((), device=p.device, dtype=_get_scalar_dtype()) | |
state["eta"] = torch.tensor(group["lr"], device=p.device, dtype=_get_scalar_dtype()) | |
state["mu"] = torch.ones((), device=p.device, dtype=_get_scalar_dtype()) | |
state["ax"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
mus.append(state["mu"]) | |
axs.append(state["ax"]) | |
etas.append(state["eta"]) | |
state_steps.append(state["step"]) | |
return has_complex | |
def step(self, closure=None): | |
"""Perform a single optimization step. | |
Args: | |
closure (Callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
self._cuda_graph_capture_health_check() | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
params_with_grad = [] | |
grads = [] | |
mus = [] | |
axs = [] | |
etas = [] | |
state_steps = [] | |
has_complex = self._init_group(group, params_with_grad, grads, mus, axs, etas, state_steps) | |
asgd( | |
params_with_grad, | |
grads, | |
axs, | |
mus, | |
etas, | |
state_steps, | |
lambd=group["lambd"], | |
lr=group["lr"], | |
t0=group["t0"], | |
alpha=group["alpha"], | |
weight_decay=group["weight_decay"], | |
foreach=group["foreach"], | |
maximize=group["maximize"], | |
differentiable=group["differentiable"], | |
capturable=group["capturable"], | |
has_complex=has_complex, | |
) | |
return loss | |
ASGD.__doc__ = fr"""Implements Averaged Stochastic Gradient Descent. | |
It has been proposed in `Acceleration of stochastic approximation by | |
averaging`_. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-2) | |
lambd (float, optional): decay term (default: 1e-4) | |
alpha (float, optional): power for eta update (default: 0.75) | |
t0 (float, optional): point at which to start averaging (default: 1e6) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
{_foreach_doc} | |
{_maximize_doc} | |
{_differentiable_doc} | |
{_capturable_doc} | |
.. _Acceleration of stochastic approximation by averaging: | |
https://dl.acm.org/citation.cfm?id=131098 | |
""" | |
def asgd( | |
params: List[Tensor], | |
grads: List[Tensor], | |
axs: List[Tensor], | |
mus: List[Tensor], | |
etas: List[Tensor], | |
state_steps: List[Tensor], | |
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 | |
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim | |
foreach: Optional[bool] = None, | |
maximize: bool = False, | |
differentiable: bool = False, | |
capturable: bool = False, | |
has_complex: bool = False, | |
*, | |
lambd: float, | |
lr: float, | |
t0: float, | |
alpha: float, | |
weight_decay: float, | |
): | |
r"""Functional API that performs asgd algorithm computation. | |
See :class:`~torch.optim.ASGD` for details. | |
""" | |
if foreach is None: | |
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False) | |
if foreach and torch.jit.is_scripting(): | |
raise RuntimeError("torch.jit.script not supported with foreach optimizers") | |
if foreach and not torch.jit.is_scripting(): | |
func = _multi_tensor_asgd | |
else: | |
func = _single_tensor_asgd | |
func( | |
params, | |
grads, | |
axs, | |
mus, | |
etas, | |
state_steps, | |
lambd=lambd, | |
lr=lr, | |
t0=t0, | |
alpha=alpha, | |
weight_decay=weight_decay, | |
maximize=maximize, | |
differentiable=differentiable, | |
capturable=capturable, | |
has_complex=has_complex, | |
) | |
def _single_tensor_asgd( | |
params: List[Tensor], | |
grads: List[Tensor], | |
axs: List[Tensor], | |
mus: List[Tensor], | |
etas: List[Tensor], | |
state_steps: List[Tensor], | |
*, | |
lambd: float, | |
lr: float, | |
t0: float, | |
alpha: float, | |
weight_decay: float, | |
maximize: bool, | |
differentiable: bool, | |
capturable: bool, | |
has_complex: bool, | |
): | |
for i, param in enumerate(params): | |
grad = grads[i] | |
grad = grad if not maximize else -grad | |
mu = mus[i] | |
ax = axs[i] | |
eta = etas[i] | |
step_t = state_steps[i] | |
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] | |
if not torch._utils.is_compiling() and capturable: | |
assert (param.is_cuda and mu.is_cuda and eta.is_cuda and step_t.is_cuda) or ( | |
param.is_xla and mu.is_xla and eta.is_xla and step_t.is_xla | |
), "If capturable=True, params, mus, etas, and state_steps must be CUDA or XLA tensors." | |
if torch.is_complex(param): | |
grad = torch.view_as_real(grad) | |
param = torch.view_as_real(param) | |
ax = torch.view_as_real(ax) | |
# update step | |
step_t += 1 | |
if weight_decay != 0: | |
grad = grad.add(param, alpha=weight_decay) | |
if capturable: | |
param.mul_(1 - lambd * eta) | |
param.addcmul_(grad, eta, value=-1) # update parameter | |
else: | |
eta_value = _get_value(eta) | |
param.mul_(1 - lambd * eta_value) # decay term | |
param.add_(grad, alpha=-eta_value) # update parameter | |
# averaging | |
if capturable or mu.item() != 1: | |
ax.add_(param.sub(ax).mul_(mu)) | |
else: | |
ax.copy_(param) | |
if capturable: | |
eta.copy_(lr / ((1 + lambd * lr * step_t) ** alpha)) | |
mu.copy_(1 / torch.maximum(step_t - t0, torch.ones_like(step_t))) | |
else: | |
step = _get_value(step_t) | |
new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha)) | |
eta.copy_(new_eta) | |
new_mu = _to_tensor(1 / max(1, step - t0)) | |
mu.copy_(new_mu) | |
def _multi_tensor_asgd( | |
params: List[Tensor], | |
grads: List[Tensor], | |
axs: List[Tensor], | |
mus: List[Tensor], | |
etas: List[Tensor], | |
state_steps: List[Tensor], | |
*, | |
lambd: float, | |
lr: float, | |
t0: float, | |
alpha: float, | |
weight_decay: float, | |
maximize: bool, | |
differentiable: bool, | |
capturable: bool, | |
has_complex: bool, | |
): | |
if len(params) == 0: | |
return | |
assert not differentiable, "_foreach ops don't support autograd" | |
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] | |
if not torch._utils.is_compiling() and capturable: | |
assert all(p.is_cuda and mu.is_cuda and eta.is_cuda and step.is_cuda | |
for p, mu, eta, step in zip(params, mus, etas, state_steps)), \ | |
"If capturable=True, params, mus, etas, and state_steps must be CUDA tensors." | |
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, axs, mus, etas, state_steps]) | |
for ((device, _), ((grouped_params, grouped_grads, grouped_axs, grouped_mus, | |
grouped_etas, grouped_state_steps), _)) in grouped_tensors.items(): | |
if has_complex: | |
_view_as_real(grouped_params, grouped_grads, grouped_axs) | |
if maximize: | |
grouped_grads = torch._foreach_neg(grouped_grads) | |
# Update steps | |
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over | |
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just | |
# wrapped it once now. The alpha is required to assure we go to the right overload. | |
if grouped_state_steps[0].is_cpu: | |
torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0) | |
else: | |
torch._foreach_add_(grouped_state_steps, 1) | |
# intermediate = grad + param * lambd | |
if weight_decay != 0: | |
if maximize: | |
torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) | |
intermediate = grouped_grads | |
else: | |
intermediate = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay) | |
torch._foreach_add_(intermediate, grouped_params, alpha=lambd) | |
else: | |
intermediate = torch._foreach_add(grouped_grads, grouped_params, alpha=lambd) | |
# update param | |
# param * (1 - lambd * eta) - eta * grad | |
# => param - param * lambd * eta - eta * grad | |
# => param - eta * intermediate | |
torch._foreach_addcmul_(grouped_params, intermediate, grouped_etas, value=-1) | |
del intermediate | |
# update grouped_axs | |
# averaging: ax = ax + mu * (param - ax) | |
# Note (mlazos): We can't use lerp here since it requires weight to be float64 | |
# and our grouping code requires dtypes to match for all tensors in a group (and it should, since | |
# we use the mus in other places) | |
# all dtypes need to match, so we could introduce a cast in a loop | |
# but since this only adds one additional kernel launch, this looks like the cleaner | |
# and faster solution | |
intermediate = torch._foreach_sub(grouped_params, grouped_axs) | |
torch._foreach_addcmul_(grouped_axs, intermediate, grouped_mus) | |
del intermediate | |
if capturable: | |
# update grouped_mus | |
new_mus = torch._foreach_sub(grouped_state_steps, t0) | |
torch._foreach_maximum_(new_mus, 1.0) | |
torch._foreach_reciprocal_(new_mus) | |
torch._foreach_copy_(grouped_mus, new_mus) | |
del new_mus | |
# update eta = lr / (1 + lambd * lr * step^alpha) | |
new_etas = torch._foreach_pow(grouped_state_steps, alpha) | |
torch._foreach_mul_(new_etas, lambd) | |
torch._foreach_mul_(new_etas, lr) | |
torch._foreach_add_(new_etas, 1) | |
torch._foreach_reciprocal_(new_etas) | |
torch._foreach_mul_(new_etas, lr) | |
torch._foreach_copy_(grouped_etas, new_etas) | |
else: | |
step = grouped_state_steps[0].item() | |
new_etas = [] | |
new_mus = [] | |
for i in range(len(grouped_mus)): | |
new_eta = _to_tensor( | |
lr / (1 + lambd * lr * step ** alpha), device=device | |
) | |
new_etas.append(new_eta) | |
new_mu = _to_tensor(1 / max(1, step - t0), device=device) | |
new_mus.append(new_mu) | |
torch._foreach_copy_(grouped_etas, new_etas) | |
torch._foreach_copy_(grouped_mus, new_mus) | |