Spaces:
Running
Running
import torch | |
from torch import Tensor | |
from .optimizer import (Optimizer, _default_to_fused_or_foreach, _use_grad_for_differentiable, | |
_differentiable_doc, _foreach_doc, _maximize_doc, _view_as_real) | |
from typing import List, Optional | |
__all__ = ["RMSprop", "rmsprop"] | |
class RMSprop(Optimizer): | |
def __init__( | |
self, | |
params, | |
lr=1e-2, | |
alpha=0.99, | |
eps=1e-8, | |
weight_decay=0, | |
momentum=0, | |
centered=False, | |
foreach: Optional[bool] = None, | |
maximize: bool = False, | |
differentiable: bool = False, | |
): | |
if not 0.0 <= lr: | |
raise ValueError(f"Invalid learning rate: {lr}") | |
if not 0.0 <= eps: | |
raise ValueError(f"Invalid epsilon value: {eps}") | |
if not 0.0 <= momentum: | |
raise ValueError(f"Invalid momentum value: {momentum}") | |
if not 0.0 <= weight_decay: | |
raise ValueError(f"Invalid weight_decay value: {weight_decay}") | |
if not 0.0 <= alpha: | |
raise ValueError(f"Invalid alpha value: {alpha}") | |
defaults = dict( | |
lr=lr, | |
momentum=momentum, | |
alpha=alpha, | |
eps=eps, | |
centered=centered, | |
weight_decay=weight_decay, | |
foreach=foreach, | |
maximize=maximize, | |
differentiable=differentiable, | |
) | |
super().__init__(params, defaults) | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault("momentum", 0) | |
group.setdefault("centered", False) | |
group.setdefault("foreach", None) | |
group.setdefault("maximize", False) | |
group.setdefault("differentiable", False) | |
def _init_group(self, group, params_with_grad, grads, square_avgs, momentum_buffer_list, grad_avgs): | |
has_complex = False | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
has_complex |= torch.is_complex(p) | |
params_with_grad.append(p) | |
if p.grad.is_sparse: | |
raise RuntimeError("RMSprop does not support sparse gradients") | |
grads.append(p.grad) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
state["square_avg"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
if group["momentum"] > 0: | |
state["momentum_buffer"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
if group["centered"]: | |
state["grad_avg"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
square_avgs.append(state["square_avg"]) | |
if group["momentum"] > 0: | |
momentum_buffer_list.append(state["momentum_buffer"]) | |
if group["centered"]: | |
grad_avgs.append(state["grad_avg"]) | |
if group["differentiable"] and isinstance(state["step"], Tensor): | |
raise RuntimeError("`step` can't be a tensor") | |
state["step"] += 1 | |
return has_complex | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (Callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
params_with_grad = [] | |
grads = [] | |
square_avgs = [] | |
grad_avgs = [] | |
momentum_buffer_list = [] | |
has_complex = self._init_group(group, params_with_grad, grads, square_avgs, momentum_buffer_list, grad_avgs) | |
rmsprop( | |
params_with_grad, | |
grads, | |
square_avgs, | |
grad_avgs, | |
momentum_buffer_list, | |
lr=group["lr"], | |
alpha=group["alpha"], | |
eps=group["eps"], | |
weight_decay=group["weight_decay"], | |
momentum=group["momentum"], | |
centered=group["centered"], | |
foreach=group["foreach"], | |
maximize=group["maximize"], | |
differentiable=group["differentiable"], | |
has_complex=has_complex, | |
) | |
return loss | |
RMSprop.__doc__ = r"""Implements RMSprop algorithm. | |
.. math:: | |
\begin{aligned} | |
&\rule{110mm}{0.4pt} \\ | |
&\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)}, | |
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ | |
&\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\ | |
&\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \: | |
\textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex] | |
&\rule{110mm}{0.4pt} \\ | |
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ | |
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ | |
&\hspace{5mm}if \: \lambda \neq 0 \\ | |
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ | |
&\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t | |
\hspace{8mm} \\ | |
&\hspace{5mm} \tilde{v_t} \leftarrow v_t \\ | |
&\hspace{5mm}if \: centered \\ | |
&\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\ | |
&\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\ | |
&\hspace{5mm}if \: \mu > 0 \\ | |
&\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} + | |
g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\ | |
&\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\ | |
&\hspace{5mm} else \\ | |
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - | |
\gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\ | |
&\rule{110mm}{0.4pt} \\[-1.ex] | |
&\bf{return} \: \theta_t \\[-1.ex] | |
&\rule{110mm}{0.4pt} \\[-1.ex] | |
\end{aligned} | |
For further details regarding the algorithm we refer to | |
`lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton. | |
and centered version `Generating Sequences | |
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. | |
The implementation here takes the square root of the gradient average before | |
adding epsilon (note that TensorFlow interchanges these two operations). The effective | |
learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma` | |
is the scheduled learning rate and :math:`v` is the weighted moving average | |
of the squared gradient. | |
""" + fr""" | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-2) | |
momentum (float, optional): momentum factor (default: 0) | |
alpha (float, optional): smoothing constant (default: 0.99) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
centered (bool, optional) : if ``True``, compute the centered RMSProp, | |
the gradient is normalized by an estimation of its variance | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
{_foreach_doc} | |
{_maximize_doc} | |
{_differentiable_doc} | |
""" | |
def rmsprop( | |
params: List[Tensor], | |
grads: List[Tensor], | |
square_avgs: List[Tensor], | |
grad_avgs: List[Tensor], | |
momentum_buffer_list: List[Tensor], | |
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 | |
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim | |
foreach: Optional[bool] = None, | |
maximize: bool = False, | |
differentiable: bool = False, | |
has_complex: bool = False, | |
*, | |
lr: float, | |
alpha: float, | |
eps: float, | |
weight_decay: float, | |
momentum: float, | |
centered: bool, | |
): | |
r"""Functional API that performs rmsprop algorithm computation. | |
See :class:`~torch.optim.RMSProp` for details. | |
""" | |
if foreach is None: | |
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False) | |
if foreach and torch.jit.is_scripting(): | |
raise RuntimeError("torch.jit.script not supported with foreach optimizers") | |
if foreach and not torch.jit.is_scripting(): | |
func = _multi_tensor_rmsprop | |
else: | |
func = _single_tensor_rmsprop | |
func( | |
params, | |
grads, | |
square_avgs, | |
grad_avgs, | |
momentum_buffer_list, | |
lr=lr, | |
alpha=alpha, | |
eps=eps, | |
weight_decay=weight_decay, | |
momentum=momentum, | |
centered=centered, | |
maximize=maximize, | |
differentiable=differentiable, | |
has_complex=has_complex, | |
) | |
def _single_tensor_rmsprop( | |
params: List[Tensor], | |
grads: List[Tensor], | |
square_avgs: List[Tensor], | |
grad_avgs: List[Tensor], | |
momentum_buffer_list: List[Tensor], | |
*, | |
lr: float, | |
alpha: float, | |
eps: float, | |
weight_decay: float, | |
momentum: float, | |
centered: bool, | |
maximize: bool, | |
differentiable: bool, | |
has_complex: bool, | |
): | |
for i, param in enumerate(params): | |
grad = grads[i] | |
grad = grad if not maximize else -grad | |
square_avg = square_avgs[i] | |
if weight_decay != 0: | |
grad = grad.add(param, alpha=weight_decay) | |
is_complex_param = torch.is_complex(param) | |
if is_complex_param: | |
param = torch.view_as_real(param) | |
grad = torch.view_as_real(grad) | |
square_avg = torch.view_as_real(square_avg) | |
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) | |
if centered: | |
grad_avg = grad_avgs[i] | |
if is_complex_param: | |
grad_avg = torch.view_as_real(grad_avg) | |
grad_avg.lerp_(grad, 1 - alpha) | |
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_() | |
else: | |
avg = square_avg.sqrt() | |
if differentiable: | |
avg = avg.add(eps) | |
else: | |
avg = avg.add_(eps) | |
if momentum > 0: | |
buf = momentum_buffer_list[i] | |
if is_complex_param: | |
buf = torch.view_as_real(buf) | |
buf.mul_(momentum).addcdiv_(grad, avg) | |
param.add_(buf, alpha=-lr) | |
else: | |
param.addcdiv_(grad, avg, value=-lr) | |
def _multi_tensor_rmsprop( | |
params: List[Tensor], | |
grads: List[Tensor], | |
square_avgs: List[Tensor], | |
grad_avgs: List[Tensor], | |
momentum_buffer_list: List[Tensor], | |
*, | |
lr: float, | |
alpha: float, | |
eps: float, | |
weight_decay: float, | |
momentum: float, | |
centered: bool, | |
maximize: bool, | |
differentiable: bool, | |
has_complex: bool, | |
): | |
if len(params) == 0: | |
return | |
assert not differentiable, "_foreach ops don't support autograd" | |
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, square_avgs, grad_avgs, momentum_buffer_list]) | |
for (((grouped_params, grouped_grads, grouped_square_avgs, grouped_grad_avgs, | |
grouped_momentum_buffer_list)), _) in grouped_tensors.values(): | |
if has_complex: | |
state_and_grads = [grouped_grads, grouped_square_avgs] | |
if momentum > 0: | |
state_and_grads.append(grouped_momentum_buffer_list) | |
if centered: | |
state_and_grads.append(grouped_grad_avgs) | |
_view_as_real(grouped_params, *state_and_grads) | |
if maximize: | |
grouped_grads = torch._foreach_neg(grouped_grads) | |
if weight_decay != 0: | |
# Re-use the intermediate memory (grouped_grads) already allocated for maximize | |
if maximize: | |
torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) | |
else: | |
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay) | |
torch._foreach_mul_(grouped_square_avgs, alpha) | |
torch._foreach_addcmul_(grouped_square_avgs, grouped_grads, grouped_grads, value=1 - alpha) | |
if centered: | |
torch._foreach_lerp_(grouped_grad_avgs, grouped_grads, 1 - alpha) | |
avg = torch._foreach_addcmul(grouped_square_avgs, grouped_grad_avgs, grouped_grad_avgs, value=-1) | |
torch._foreach_sqrt_(avg) | |
torch._foreach_add_(avg, eps) | |
else: | |
avg = torch._foreach_sqrt(grouped_square_avgs) | |
torch._foreach_add_(avg, eps) | |
if momentum > 0: | |
torch._foreach_mul_(grouped_momentum_buffer_list, momentum) | |
torch._foreach_addcdiv_(grouped_momentum_buffer_list, grouped_grads, avg) | |
torch._foreach_add_(grouped_params, grouped_momentum_buffer_list, alpha=-lr) | |
else: | |
torch._foreach_addcdiv_(grouped_params, grouped_grads, avg, value=-lr) | |