Spaces:
Running
Running
import numpy as np | |
from gym import utils | |
from gym.envs.mujoco import MuJocoPyEnv | |
from gym.spaces import Box | |
class InvertedPendulumEnv(MuJocoPyEnv, utils.EzPickle): | |
metadata = { | |
"render_modes": [ | |
"human", | |
"rgb_array", | |
"depth_array", | |
], | |
"render_fps": 25, | |
} | |
def __init__(self, **kwargs): | |
utils.EzPickle.__init__(self, **kwargs) | |
observation_space = Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float64) | |
MuJocoPyEnv.__init__( | |
self, | |
"inverted_pendulum.xml", | |
2, | |
observation_space=observation_space, | |
**kwargs | |
) | |
def step(self, a): | |
reward = 1.0 | |
self.do_simulation(a, self.frame_skip) | |
ob = self._get_obs() | |
terminated = bool(not np.isfinite(ob).all() or (np.abs(ob[1]) > 0.2)) | |
if self.render_mode == "human": | |
self.render() | |
return ob, reward, terminated, False, {} | |
def reset_model(self): | |
qpos = self.init_qpos + self.np_random.uniform( | |
size=self.model.nq, low=-0.01, high=0.01 | |
) | |
qvel = self.init_qvel + self.np_random.uniform( | |
size=self.model.nv, low=-0.01, high=0.01 | |
) | |
self.set_state(qpos, qvel) | |
return self._get_obs() | |
def _get_obs(self): | |
return np.concatenate([self.sim.data.qpos, self.sim.data.qvel]).ravel() | |
def viewer_setup(self): | |
assert self.viewer is not None | |
self.viewer.cam.trackbodyid = 0 | |
self.viewer.cam.distance = self.model.stat.extent | |