Kano001's picture
Upload 919 files
375a1cf verified
raw
history blame
2.5 kB
import numpy as np
from gym import utils
from gym.envs.mujoco import MuJocoPyEnv
from gym.spaces import Box
class PusherEnv(MuJocoPyEnv, utils.EzPickle):
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 20,
}
def __init__(self, **kwargs):
utils.EzPickle.__init__(self, **kwargs)
observation_space = Box(low=-np.inf, high=np.inf, shape=(23,), dtype=np.float64)
MuJocoPyEnv.__init__(
self, "pusher.xml", 5, observation_space=observation_space, **kwargs
)
def step(self, a):
vec_1 = self.get_body_com("object") - self.get_body_com("tips_arm")
vec_2 = self.get_body_com("object") - self.get_body_com("goal")
reward_near = -np.linalg.norm(vec_1)
reward_dist = -np.linalg.norm(vec_2)
reward_ctrl = -np.square(a).sum()
reward = reward_dist + 0.1 * reward_ctrl + 0.5 * reward_near
self.do_simulation(a, self.frame_skip)
if self.render_mode == "human":
self.render()
ob = self._get_obs()
return (
ob,
reward,
False,
False,
dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl),
)
def viewer_setup(self):
assert self.viewer is not None
self.viewer.cam.trackbodyid = -1
self.viewer.cam.distance = 4.0
def reset_model(self):
qpos = self.init_qpos
self.goal_pos = np.asarray([0, 0])
while True:
self.cylinder_pos = np.concatenate(
[
self.np_random.uniform(low=-0.3, high=0, size=1),
self.np_random.uniform(low=-0.2, high=0.2, size=1),
]
)
if np.linalg.norm(self.cylinder_pos - self.goal_pos) > 0.17:
break
qpos[-4:-2] = self.cylinder_pos
qpos[-2:] = self.goal_pos
qvel = self.init_qvel + self.np_random.uniform(
low=-0.005, high=0.005, size=self.model.nv
)
qvel[-4:] = 0
self.set_state(qpos, qvel)
return self._get_obs()
def _get_obs(self):
return np.concatenate(
[
self.sim.data.qpos.flat[:7],
self.sim.data.qvel.flat[:7],
self.get_body_com("tips_arm"),
self.get_body_com("object"),
self.get_body_com("goal"),
]
)