Spaces:
Running
Running
""" | |
This module defines the mpf, mpc classes, and standard functions for | |
operating with them. | |
""" | |
__docformat__ = 'plaintext' | |
import functools | |
import re | |
from .ctx_base import StandardBaseContext | |
from .libmp.backend import basestring, BACKEND | |
from . import libmp | |
from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps, | |
round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps, | |
ComplexResult, to_pickable, from_pickable, normalize, | |
from_int, from_float, from_str, to_int, to_float, to_str, | |
from_rational, from_man_exp, | |
fone, fzero, finf, fninf, fnan, | |
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, | |
mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod, | |
mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge, | |
mpf_hash, mpf_rand, | |
mpf_sum, | |
bitcount, to_fixed, | |
mpc_to_str, | |
mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate, | |
mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf, | |
mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int, | |
mpc_mpf_div, | |
mpf_pow, | |
mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10, | |
mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin, | |
mpf_glaisher, mpf_twinprime, mpf_mertens, | |
int_types) | |
from . import function_docs | |
from . import rational | |
new = object.__new__ | |
get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?)??' | |
r'(?P<im>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?j)?\)?$') | |
if BACKEND == 'sage': | |
from sage.libs.mpmath.ext_main import Context as BaseMPContext | |
# pickle hack | |
import sage.libs.mpmath.ext_main as _mpf_module | |
else: | |
from .ctx_mp_python import PythonMPContext as BaseMPContext | |
from . import ctx_mp_python as _mpf_module | |
from .ctx_mp_python import _mpf, _mpc, mpnumeric | |
class MPContext(BaseMPContext, StandardBaseContext): | |
""" | |
Context for multiprecision arithmetic with a global precision. | |
""" | |
def __init__(ctx): | |
BaseMPContext.__init__(ctx) | |
ctx.trap_complex = False | |
ctx.pretty = False | |
ctx.types = [ctx.mpf, ctx.mpc, ctx.constant] | |
ctx._mpq = rational.mpq | |
ctx.default() | |
StandardBaseContext.__init__(ctx) | |
ctx.mpq = rational.mpq | |
ctx.init_builtins() | |
ctx.hyp_summators = {} | |
ctx._init_aliases() | |
# XXX: automate | |
try: | |
ctx.bernoulli.im_func.func_doc = function_docs.bernoulli | |
ctx.primepi.im_func.func_doc = function_docs.primepi | |
ctx.psi.im_func.func_doc = function_docs.psi | |
ctx.atan2.im_func.func_doc = function_docs.atan2 | |
except AttributeError: | |
# python 3 | |
ctx.bernoulli.__func__.func_doc = function_docs.bernoulli | |
ctx.primepi.__func__.func_doc = function_docs.primepi | |
ctx.psi.__func__.func_doc = function_docs.psi | |
ctx.atan2.__func__.func_doc = function_docs.atan2 | |
ctx.digamma.func_doc = function_docs.digamma | |
ctx.cospi.func_doc = function_docs.cospi | |
ctx.sinpi.func_doc = function_docs.sinpi | |
def init_builtins(ctx): | |
mpf = ctx.mpf | |
mpc = ctx.mpc | |
# Exact constants | |
ctx.one = ctx.make_mpf(fone) | |
ctx.zero = ctx.make_mpf(fzero) | |
ctx.j = ctx.make_mpc((fzero,fone)) | |
ctx.inf = ctx.make_mpf(finf) | |
ctx.ninf = ctx.make_mpf(fninf) | |
ctx.nan = ctx.make_mpf(fnan) | |
eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1), | |
"epsilon of working precision", "eps") | |
ctx.eps = eps | |
# Approximate constants | |
ctx.pi = ctx.constant(mpf_pi, "pi", "pi") | |
ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2") | |
ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10") | |
ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi") | |
ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e") | |
ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler") | |
ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan") | |
ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin") | |
ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher") | |
ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery") | |
ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree") | |
ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime") | |
ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens") | |
# Standard functions | |
ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt) | |
ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt) | |
ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log) | |
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan) | |
ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp) | |
ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj) | |
ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi) | |
ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin) | |
ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos) | |
ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan) | |
ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh) | |
ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh) | |
ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh) | |
ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin) | |
ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos) | |
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan) | |
ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh) | |
ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh) | |
ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh) | |
ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi) | |
ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi) | |
ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor) | |
ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil) | |
ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint) | |
ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac) | |
ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci) | |
ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma) | |
ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma) | |
ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma) | |
ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial) | |
ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0) | |
ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic) | |
ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei) | |
ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1) | |
ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci) | |
ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si) | |
ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk) | |
ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe) | |
ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1) | |
ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None) | |
ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None) | |
ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta) | |
ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta) | |
# Faster versions | |
ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt) | |
ctx.exp = getattr(ctx, "_sage_exp", ctx.exp) | |
ctx.ln = getattr(ctx, "_sage_ln", ctx.ln) | |
ctx.cos = getattr(ctx, "_sage_cos", ctx.cos) | |
ctx.sin = getattr(ctx, "_sage_sin", ctx.sin) | |
def to_fixed(ctx, x, prec): | |
return x.to_fixed(prec) | |
def hypot(ctx, x, y): | |
r""" | |
Computes the Euclidean norm of the vector `(x, y)`, equal | |
to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real.""" | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding)) | |
def _gamma_upper_int(ctx, n, z): | |
n = int(ctx._re(n)) | |
if n == 0: | |
return ctx.e1(z) | |
if not hasattr(z, '_mpf_'): | |
raise NotImplementedError | |
prec, rounding = ctx._prec_rounding | |
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True) | |
if imag is None: | |
return ctx.make_mpf(real) | |
else: | |
return ctx.make_mpc((real, imag)) | |
def _expint_int(ctx, n, z): | |
n = int(n) | |
if n == 1: | |
return ctx.e1(z) | |
if not hasattr(z, '_mpf_'): | |
raise NotImplementedError | |
prec, rounding = ctx._prec_rounding | |
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding) | |
if imag is None: | |
return ctx.make_mpf(real) | |
else: | |
return ctx.make_mpc((real, imag)) | |
def _nthroot(ctx, x, n): | |
if hasattr(x, '_mpf_'): | |
try: | |
return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding)) | |
except ComplexResult: | |
if ctx.trap_complex: | |
raise | |
x = (x._mpf_, libmp.fzero) | |
else: | |
x = x._mpc_ | |
return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding)) | |
def _besselj(ctx, n, z): | |
prec, rounding = ctx._prec_rounding | |
if hasattr(z, '_mpf_'): | |
return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding)) | |
elif hasattr(z, '_mpc_'): | |
return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding)) | |
def _agm(ctx, a, b=1): | |
prec, rounding = ctx._prec_rounding | |
if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'): | |
try: | |
v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding) | |
return ctx.make_mpf(v) | |
except ComplexResult: | |
pass | |
if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero) | |
else: a = a._mpc_ | |
if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero) | |
else: b = b._mpc_ | |
return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding)) | |
def bernoulli(ctx, n): | |
return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding)) | |
def _zeta_int(ctx, n): | |
return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding)) | |
def atan2(ctx, y, x): | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding)) | |
def psi(ctx, m, z): | |
z = ctx.convert(z) | |
m = int(m) | |
if ctx._is_real_type(z): | |
return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding)) | |
else: | |
return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding)) | |
def cos_sin(ctx, x, **kwargs): | |
if type(x) not in ctx.types: | |
x = ctx.convert(x) | |
prec, rounding = ctx._parse_prec(kwargs) | |
if hasattr(x, '_mpf_'): | |
c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding) | |
return ctx.make_mpf(c), ctx.make_mpf(s) | |
elif hasattr(x, '_mpc_'): | |
c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding) | |
return ctx.make_mpc(c), ctx.make_mpc(s) | |
else: | |
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs) | |
def cospi_sinpi(ctx, x, **kwargs): | |
if type(x) not in ctx.types: | |
x = ctx.convert(x) | |
prec, rounding = ctx._parse_prec(kwargs) | |
if hasattr(x, '_mpf_'): | |
c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding) | |
return ctx.make_mpf(c), ctx.make_mpf(s) | |
elif hasattr(x, '_mpc_'): | |
c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding) | |
return ctx.make_mpc(c), ctx.make_mpc(s) | |
else: | |
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs) | |
def clone(ctx): | |
""" | |
Create a copy of the context, with the same working precision. | |
""" | |
a = ctx.__class__() | |
a.prec = ctx.prec | |
return a | |
# Several helper methods | |
# TODO: add more of these, make consistent, write docstrings, ... | |
def _is_real_type(ctx, x): | |
if hasattr(x, '_mpc_') or type(x) is complex: | |
return False | |
return True | |
def _is_complex_type(ctx, x): | |
if hasattr(x, '_mpc_') or type(x) is complex: | |
return True | |
return False | |
def isnan(ctx, x): | |
""" | |
Return *True* if *x* is a NaN (not-a-number), or for a complex | |
number, whether either the real or complex part is NaN; | |
otherwise return *False*:: | |
>>> from mpmath import * | |
>>> isnan(3.14) | |
False | |
>>> isnan(nan) | |
True | |
>>> isnan(mpc(3.14,2.72)) | |
False | |
>>> isnan(mpc(3.14,nan)) | |
True | |
""" | |
if hasattr(x, "_mpf_"): | |
return x._mpf_ == fnan | |
if hasattr(x, "_mpc_"): | |
return fnan in x._mpc_ | |
if isinstance(x, int_types) or isinstance(x, rational.mpq): | |
return False | |
x = ctx.convert(x) | |
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): | |
return ctx.isnan(x) | |
raise TypeError("isnan() needs a number as input") | |
def isfinite(ctx, x): | |
""" | |
Return *True* if *x* is a finite number, i.e. neither | |
an infinity or a NaN. | |
>>> from mpmath import * | |
>>> isfinite(inf) | |
False | |
>>> isfinite(-inf) | |
False | |
>>> isfinite(3) | |
True | |
>>> isfinite(nan) | |
False | |
>>> isfinite(3+4j) | |
True | |
>>> isfinite(mpc(3,inf)) | |
False | |
>>> isfinite(mpc(nan,3)) | |
False | |
""" | |
if ctx.isinf(x) or ctx.isnan(x): | |
return False | |
return True | |
def isnpint(ctx, x): | |
""" | |
Determine if *x* is a nonpositive integer. | |
""" | |
if not x: | |
return True | |
if hasattr(x, '_mpf_'): | |
sign, man, exp, bc = x._mpf_ | |
return sign and exp >= 0 | |
if hasattr(x, '_mpc_'): | |
return not x.imag and ctx.isnpint(x.real) | |
if type(x) in int_types: | |
return x <= 0 | |
if isinstance(x, ctx.mpq): | |
p, q = x._mpq_ | |
if not p: | |
return True | |
return q == 1 and p <= 0 | |
return ctx.isnpint(ctx.convert(x)) | |
def __str__(ctx): | |
lines = ["Mpmath settings:", | |
(" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]", | |
(" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]", | |
(" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]", | |
] | |
return "\n".join(lines) | |
def _repr_digits(ctx): | |
return repr_dps(ctx._prec) | |
def _str_digits(ctx): | |
return ctx._dps | |
def extraprec(ctx, n, normalize_output=False): | |
""" | |
The block | |
with extraprec(n): | |
<code> | |
increases the precision n bits, executes <code>, and then | |
restores the precision. | |
extraprec(n)(f) returns a decorated version of the function f | |
that increases the working precision by n bits before execution, | |
and restores the parent precision afterwards. With | |
normalize_output=True, it rounds the return value to the parent | |
precision. | |
""" | |
return PrecisionManager(ctx, lambda p: p + n, None, normalize_output) | |
def extradps(ctx, n, normalize_output=False): | |
""" | |
This function is analogous to extraprec (see documentation) | |
but changes the decimal precision instead of the number of bits. | |
""" | |
return PrecisionManager(ctx, None, lambda d: d + n, normalize_output) | |
def workprec(ctx, n, normalize_output=False): | |
""" | |
The block | |
with workprec(n): | |
<code> | |
sets the precision to n bits, executes <code>, and then restores | |
the precision. | |
workprec(n)(f) returns a decorated version of the function f | |
that sets the precision to n bits before execution, | |
and restores the precision afterwards. With normalize_output=True, | |
it rounds the return value to the parent precision. | |
""" | |
return PrecisionManager(ctx, lambda p: n, None, normalize_output) | |
def workdps(ctx, n, normalize_output=False): | |
""" | |
This function is analogous to workprec (see documentation) | |
but changes the decimal precision instead of the number of bits. | |
""" | |
return PrecisionManager(ctx, None, lambda d: n, normalize_output) | |
def autoprec(ctx, f, maxprec=None, catch=(), verbose=False): | |
r""" | |
Return a wrapped copy of *f* that repeatedly evaluates *f* | |
with increasing precision until the result converges to the | |
full precision used at the point of the call. | |
This heuristically protects against rounding errors, at the cost of | |
roughly a 2x slowdown compared to manually setting the optimal | |
precision. This method can, however, easily be fooled if the results | |
from *f* depend "discontinuously" on the precision, for instance | |
if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec` | |
should be used judiciously. | |
**Examples** | |
Many functions are sensitive to perturbations of the input arguments. | |
If the arguments are decimal numbers, they may have to be converted | |
to binary at a much higher precision. If the amount of required | |
extra precision is unknown, :func:`~mpmath.autoprec` is convenient:: | |
>>> from mpmath import * | |
>>> mp.dps = 15 | |
>>> mp.pretty = True | |
>>> besselj(5, 125 * 10**28) # Exact input | |
-8.03284785591801e-17 | |
>>> besselj(5, '1.25e30') # Bad | |
7.12954868316652e-16 | |
>>> autoprec(besselj)(5, '1.25e30') # Good | |
-8.03284785591801e-17 | |
The following fails to converge because `\sin(\pi) = 0` whereas all | |
finite-precision approximations of `\pi` give nonzero values:: | |
>>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL | |
Traceback (most recent call last): | |
... | |
NoConvergence: autoprec: prec increased to 2910 without convergence | |
As the following example shows, :func:`~mpmath.autoprec` can protect against | |
cancellation, but is fooled by too severe cancellation:: | |
>>> x = 1e-10 | |
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x) | |
1.00000008274037e-10 | |
1.00000000005e-10 | |
1.00000000005e-10 | |
>>> x = 1e-50 | |
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x) | |
0.0 | |
1.0e-50 | |
0.0 | |
With *catch*, an exception or list of exceptions to intercept | |
may be specified. The raised exception is interpreted | |
as signaling insufficient precision. This permits, for example, | |
evaluating a function where a too low precision results in a | |
division by zero:: | |
>>> f = lambda x: 1/(exp(x)-1) | |
>>> f(1e-30) | |
Traceback (most recent call last): | |
... | |
ZeroDivisionError | |
>>> autoprec(f, catch=ZeroDivisionError)(1e-30) | |
1.0e+30 | |
""" | |
def f_autoprec_wrapped(*args, **kwargs): | |
prec = ctx.prec | |
if maxprec is None: | |
maxprec2 = ctx._default_hyper_maxprec(prec) | |
else: | |
maxprec2 = maxprec | |
try: | |
ctx.prec = prec + 10 | |
try: | |
v1 = f(*args, **kwargs) | |
except catch: | |
v1 = ctx.nan | |
prec2 = prec + 20 | |
while 1: | |
ctx.prec = prec2 | |
try: | |
v2 = f(*args, **kwargs) | |
except catch: | |
v2 = ctx.nan | |
if v1 == v2: | |
break | |
err = ctx.mag(v2-v1) - ctx.mag(v2) | |
if err < (-prec): | |
break | |
if verbose: | |
print("autoprec: target=%s, prec=%s, accuracy=%s" \ | |
% (prec, prec2, -err)) | |
v1 = v2 | |
if prec2 >= maxprec2: | |
raise ctx.NoConvergence(\ | |
"autoprec: prec increased to %i without convergence"\ | |
% prec2) | |
prec2 += int(prec2*2) | |
prec2 = min(prec2, maxprec2) | |
finally: | |
ctx.prec = prec | |
return +v2 | |
return f_autoprec_wrapped | |
def nstr(ctx, x, n=6, **kwargs): | |
""" | |
Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n* | |
significant digits. The small default value for *n* is chosen to | |
make this function useful for printing collections of numbers | |
(lists, matrices, etc). | |
If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively | |
to each element. For unrecognized classes, :func:`~mpmath.nstr` | |
simply returns ``str(x)``. | |
The companion function :func:`~mpmath.nprint` prints the result | |
instead of returning it. | |
The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed* | |
and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`. | |
The number will be printed in fixed-point format if the position | |
of the leading digit is strictly between min_fixed | |
(default = min(-dps/3,-5)) and max_fixed (default = dps). | |
To force fixed-point format always, set min_fixed = -inf, | |
max_fixed = +inf. To force floating-point format, set | |
min_fixed >= max_fixed. | |
>>> from mpmath import * | |
>>> nstr([+pi, ldexp(1,-500)]) | |
'[3.14159, 3.05494e-151]' | |
>>> nprint([+pi, ldexp(1,-500)]) | |
[3.14159, 3.05494e-151] | |
>>> nstr(mpf("5e-10"), 5) | |
'5.0e-10' | |
>>> nstr(mpf("5e-10"), 5, strip_zeros=False) | |
'5.0000e-10' | |
>>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11) | |
'0.00000000050000' | |
>>> nstr(mpf(0), 5, show_zero_exponent=True) | |
'0.0e+0' | |
""" | |
if isinstance(x, list): | |
return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x)) | |
if isinstance(x, tuple): | |
return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x)) | |
if hasattr(x, '_mpf_'): | |
return to_str(x._mpf_, n, **kwargs) | |
if hasattr(x, '_mpc_'): | |
return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")" | |
if isinstance(x, basestring): | |
return repr(x) | |
if isinstance(x, ctx.matrix): | |
return x.__nstr__(n, **kwargs) | |
return str(x) | |
def _convert_fallback(ctx, x, strings): | |
if strings and isinstance(x, basestring): | |
if 'j' in x.lower(): | |
x = x.lower().replace(' ', '') | |
match = get_complex.match(x) | |
re = match.group('re') | |
if not re: | |
re = 0 | |
im = match.group('im').rstrip('j') | |
return ctx.mpc(ctx.convert(re), ctx.convert(im)) | |
if hasattr(x, "_mpi_"): | |
a, b = x._mpi_ | |
if a == b: | |
return ctx.make_mpf(a) | |
else: | |
raise ValueError("can only create mpf from zero-width interval") | |
raise TypeError("cannot create mpf from " + repr(x)) | |
def mpmathify(ctx, *args, **kwargs): | |
return ctx.convert(*args, **kwargs) | |
def _parse_prec(ctx, kwargs): | |
if kwargs: | |
if kwargs.get('exact'): | |
return 0, 'f' | |
prec, rounding = ctx._prec_rounding | |
if 'rounding' in kwargs: | |
rounding = kwargs['rounding'] | |
if 'prec' in kwargs: | |
prec = kwargs['prec'] | |
if prec == ctx.inf: | |
return 0, 'f' | |
else: | |
prec = int(prec) | |
elif 'dps' in kwargs: | |
dps = kwargs['dps'] | |
if dps == ctx.inf: | |
return 0, 'f' | |
prec = dps_to_prec(dps) | |
return prec, rounding | |
return ctx._prec_rounding | |
_exact_overflow_msg = "the exact result does not fit in memory" | |
_hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy | |
using a working precision of %i bits. Try with a higher maxprec, | |
maxterms, or set zeroprec.""" | |
def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs): | |
if hasattr(z, "_mpf_"): | |
key = p, q, flags, 'R' | |
v = z._mpf_ | |
elif hasattr(z, "_mpc_"): | |
key = p, q, flags, 'C' | |
v = z._mpc_ | |
if key not in ctx.hyp_summators: | |
ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1] | |
summator = ctx.hyp_summators[key] | |
prec = ctx.prec | |
maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec)) | |
extraprec = 50 | |
epsshift = 25 | |
# Jumps in magnitude occur when parameters are close to negative | |
# integers. We must ensure that these terms are included in | |
# the sum and added accurately | |
magnitude_check = {} | |
max_total_jump = 0 | |
for i, c in enumerate(coeffs): | |
if flags[i] == 'Z': | |
if i >= p and c <= 0: | |
ok = False | |
for ii, cc in enumerate(coeffs[:p]): | |
# Note: c <= cc or c < cc, depending on convention | |
if flags[ii] == 'Z' and cc <= 0 and c <= cc: | |
ok = True | |
if not ok: | |
raise ZeroDivisionError("pole in hypergeometric series") | |
continue | |
n, d = ctx.nint_distance(c) | |
n = -int(n) | |
d = -d | |
if i >= p and n >= 0 and d > 4: | |
if n in magnitude_check: | |
magnitude_check[n] += d | |
else: | |
magnitude_check[n] = d | |
extraprec = max(extraprec, d - prec + 60) | |
max_total_jump += abs(d) | |
while 1: | |
if extraprec > maxprec: | |
raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec)) | |
wp = prec + extraprec | |
if magnitude_check: | |
mag_dict = dict((n,None) for n in magnitude_check) | |
else: | |
mag_dict = {} | |
zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \ | |
epsshift, mag_dict, **kwargs) | |
cancel = -magnitude | |
jumps_resolved = True | |
if extraprec < max_total_jump: | |
for n in mag_dict.values(): | |
if (n is None) or (n < prec): | |
jumps_resolved = False | |
break | |
accurate = (cancel < extraprec-25-5 or not accurate_small) | |
if jumps_resolved: | |
if accurate: | |
break | |
# zero? | |
zeroprec = kwargs.get('zeroprec') | |
if zeroprec is not None: | |
if cancel > zeroprec: | |
if have_complex: | |
return ctx.mpc(0) | |
else: | |
return ctx.zero | |
# Some near-singularities were not included, so increase | |
# precision and repeat until they are | |
extraprec *= 2 | |
# Possible workaround for bad roundoff in fixed-point arithmetic | |
epsshift += 5 | |
extraprec += 5 | |
if type(zv) is tuple: | |
if have_complex: | |
return ctx.make_mpc(zv) | |
else: | |
return ctx.make_mpf(zv) | |
else: | |
return zv | |
def ldexp(ctx, x, n): | |
r""" | |
Computes `x 2^n` efficiently. No rounding is performed. | |
The argument `x` must be a real floating-point number (or | |
possible to convert into one) and `n` must be a Python ``int``. | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> ldexp(1, 10) | |
mpf('1024.0') | |
>>> ldexp(1, -3) | |
mpf('0.125') | |
""" | |
x = ctx.convert(x) | |
return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n)) | |
def frexp(ctx, x): | |
r""" | |
Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`, | |
`n` a Python integer, and such that `x = y 2^n`. No rounding is | |
performed. | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> frexp(7.5) | |
(mpf('0.9375'), 3) | |
""" | |
x = ctx.convert(x) | |
y, n = libmp.mpf_frexp(x._mpf_) | |
return ctx.make_mpf(y), n | |
def fneg(ctx, x, **kwargs): | |
""" | |
Negates the number *x*, giving a floating-point result, optionally | |
using a custom precision and rounding mode. | |
See the documentation of :func:`~mpmath.fadd` for a detailed description | |
of how to specify precision and rounding. | |
**Examples** | |
An mpmath number is returned:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> fneg(2.5) | |
mpf('-2.5') | |
>>> fneg(-5+2j) | |
mpc(real='5.0', imag='-2.0') | |
Precise control over rounding is possible:: | |
>>> x = fadd(2, 1e-100, exact=True) | |
>>> fneg(x) | |
mpf('-2.0') | |
>>> fneg(x, rounding='f') | |
mpf('-2.0000000000000004') | |
Negating with and without roundoff:: | |
>>> n = 200000000000000000000001 | |
>>> print(int(-mpf(n))) | |
-200000000000000016777216 | |
>>> print(int(fneg(n))) | |
-200000000000000016777216 | |
>>> print(int(fneg(n, prec=log(n,2)+1))) | |
-200000000000000000000001 | |
>>> print(int(fneg(n, dps=log(n,10)+1))) | |
-200000000000000000000001 | |
>>> print(int(fneg(n, prec=inf))) | |
-200000000000000000000001 | |
>>> print(int(fneg(n, dps=inf))) | |
-200000000000000000000001 | |
>>> print(int(fneg(n, exact=True))) | |
-200000000000000000000001 | |
""" | |
prec, rounding = ctx._parse_prec(kwargs) | |
x = ctx.convert(x) | |
if hasattr(x, '_mpf_'): | |
return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding)) | |
if hasattr(x, '_mpc_'): | |
return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding)) | |
raise ValueError("Arguments need to be mpf or mpc compatible numbers") | |
def fadd(ctx, x, y, **kwargs): | |
""" | |
Adds the numbers *x* and *y*, giving a floating-point result, | |
optionally using a custom precision and rounding mode. | |
The default precision is the working precision of the context. | |
You can specify a custom precision in bits by passing the *prec* keyword | |
argument, or by providing an equivalent decimal precision with the *dps* | |
keyword argument. If the precision is set to ``+inf``, or if the flag | |
*exact=True* is passed, an exact addition with no rounding is performed. | |
When the precision is finite, the optional *rounding* keyword argument | |
specifies the direction of rounding. Valid options are ``'n'`` for | |
nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'`` | |
for down, ``'u'`` for up. | |
**Examples** | |
Using :func:`~mpmath.fadd` with precision and rounding control:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> fadd(2, 1e-20) | |
mpf('2.0') | |
>>> fadd(2, 1e-20, rounding='u') | |
mpf('2.0000000000000004') | |
>>> nprint(fadd(2, 1e-20, prec=100), 25) | |
2.00000000000000000001 | |
>>> nprint(fadd(2, 1e-20, dps=15), 25) | |
2.0 | |
>>> nprint(fadd(2, 1e-20, dps=25), 25) | |
2.00000000000000000001 | |
>>> nprint(fadd(2, 1e-20, exact=True), 25) | |
2.00000000000000000001 | |
Exact addition avoids cancellation errors, enforcing familiar laws | |
of numbers such as `x+y-x = y`, which don't hold in floating-point | |
arithmetic with finite precision:: | |
>>> x, y = mpf(2), mpf('1e-1000') | |
>>> print(x + y - x) | |
0.0 | |
>>> print(fadd(x, y, prec=inf) - x) | |
1.0e-1000 | |
>>> print(fadd(x, y, exact=True) - x) | |
1.0e-1000 | |
Exact addition can be inefficient and may be impossible to perform | |
with large magnitude differences:: | |
>>> fadd(1, '1e-100000000000000000000', prec=inf) | |
Traceback (most recent call last): | |
... | |
OverflowError: the exact result does not fit in memory | |
""" | |
prec, rounding = ctx._parse_prec(kwargs) | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
try: | |
if hasattr(x, '_mpf_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding)) | |
if hasattr(x, '_mpc_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding)) | |
except (ValueError, OverflowError): | |
raise OverflowError(ctx._exact_overflow_msg) | |
raise ValueError("Arguments need to be mpf or mpc compatible numbers") | |
def fsub(ctx, x, y, **kwargs): | |
""" | |
Subtracts the numbers *x* and *y*, giving a floating-point result, | |
optionally using a custom precision and rounding mode. | |
See the documentation of :func:`~mpmath.fadd` for a detailed description | |
of how to specify precision and rounding. | |
**Examples** | |
Using :func:`~mpmath.fsub` with precision and rounding control:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> fsub(2, 1e-20) | |
mpf('2.0') | |
>>> fsub(2, 1e-20, rounding='d') | |
mpf('1.9999999999999998') | |
>>> nprint(fsub(2, 1e-20, prec=100), 25) | |
1.99999999999999999999 | |
>>> nprint(fsub(2, 1e-20, dps=15), 25) | |
2.0 | |
>>> nprint(fsub(2, 1e-20, dps=25), 25) | |
1.99999999999999999999 | |
>>> nprint(fsub(2, 1e-20, exact=True), 25) | |
1.99999999999999999999 | |
Exact subtraction avoids cancellation errors, enforcing familiar laws | |
of numbers such as `x-y+y = x`, which don't hold in floating-point | |
arithmetic with finite precision:: | |
>>> x, y = mpf(2), mpf('1e1000') | |
>>> print(x - y + y) | |
0.0 | |
>>> print(fsub(x, y, prec=inf) + y) | |
2.0 | |
>>> print(fsub(x, y, exact=True) + y) | |
2.0 | |
Exact addition can be inefficient and may be impossible to perform | |
with large magnitude differences:: | |
>>> fsub(1, '1e-100000000000000000000', prec=inf) | |
Traceback (most recent call last): | |
... | |
OverflowError: the exact result does not fit in memory | |
""" | |
prec, rounding = ctx._parse_prec(kwargs) | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
try: | |
if hasattr(x, '_mpf_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding)) | |
if hasattr(x, '_mpc_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding)) | |
except (ValueError, OverflowError): | |
raise OverflowError(ctx._exact_overflow_msg) | |
raise ValueError("Arguments need to be mpf or mpc compatible numbers") | |
def fmul(ctx, x, y, **kwargs): | |
""" | |
Multiplies the numbers *x* and *y*, giving a floating-point result, | |
optionally using a custom precision and rounding mode. | |
See the documentation of :func:`~mpmath.fadd` for a detailed description | |
of how to specify precision and rounding. | |
**Examples** | |
The result is an mpmath number:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> fmul(2, 5.0) | |
mpf('10.0') | |
>>> fmul(0.5j, 0.5) | |
mpc(real='0.0', imag='0.25') | |
Avoiding roundoff:: | |
>>> x, y = 10**10+1, 10**15+1 | |
>>> print(x*y) | |
10000000001000010000000001 | |
>>> print(mpf(x) * mpf(y)) | |
1.0000000001e+25 | |
>>> print(int(mpf(x) * mpf(y))) | |
10000000001000011026399232 | |
>>> print(int(fmul(x, y))) | |
10000000001000011026399232 | |
>>> print(int(fmul(x, y, dps=25))) | |
10000000001000010000000001 | |
>>> print(int(fmul(x, y, exact=True))) | |
10000000001000010000000001 | |
Exact multiplication with complex numbers can be inefficient and may | |
be impossible to perform with large magnitude differences between | |
real and imaginary parts:: | |
>>> x = 1+2j | |
>>> y = mpc(2, '1e-100000000000000000000') | |
>>> fmul(x, y) | |
mpc(real='2.0', imag='4.0') | |
>>> fmul(x, y, rounding='u') | |
mpc(real='2.0', imag='4.0000000000000009') | |
>>> fmul(x, y, exact=True) | |
Traceback (most recent call last): | |
... | |
OverflowError: the exact result does not fit in memory | |
""" | |
prec, rounding = ctx._parse_prec(kwargs) | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
try: | |
if hasattr(x, '_mpf_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding)) | |
if hasattr(x, '_mpc_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding)) | |
except (ValueError, OverflowError): | |
raise OverflowError(ctx._exact_overflow_msg) | |
raise ValueError("Arguments need to be mpf or mpc compatible numbers") | |
def fdiv(ctx, x, y, **kwargs): | |
""" | |
Divides the numbers *x* and *y*, giving a floating-point result, | |
optionally using a custom precision and rounding mode. | |
See the documentation of :func:`~mpmath.fadd` for a detailed description | |
of how to specify precision and rounding. | |
**Examples** | |
The result is an mpmath number:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> fdiv(3, 2) | |
mpf('1.5') | |
>>> fdiv(2, 3) | |
mpf('0.66666666666666663') | |
>>> fdiv(2+4j, 0.5) | |
mpc(real='4.0', imag='8.0') | |
The rounding direction and precision can be controlled:: | |
>>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits | |
mpf('0.6666259765625') | |
>>> fdiv(2, 3, rounding='d') | |
mpf('0.66666666666666663') | |
>>> fdiv(2, 3, prec=60) | |
mpf('0.66666666666666667') | |
>>> fdiv(2, 3, rounding='u') | |
mpf('0.66666666666666674') | |
Checking the error of a division by performing it at higher precision:: | |
>>> fdiv(2, 3) - fdiv(2, 3, prec=100) | |
mpf('-3.7007434154172148e-17') | |
Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not | |
allowed since the quotient of two floating-point numbers generally | |
does not have an exact floating-point representation. (In the | |
future this might be changed to allow the case where the division | |
is actually exact.) | |
>>> fdiv(2, 3, exact=True) | |
Traceback (most recent call last): | |
... | |
ValueError: division is not an exact operation | |
""" | |
prec, rounding = ctx._parse_prec(kwargs) | |
if not prec: | |
raise ValueError("division is not an exact operation") | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
if hasattr(x, '_mpf_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding)) | |
if hasattr(x, '_mpc_'): | |
if hasattr(y, '_mpf_'): | |
return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding)) | |
if hasattr(y, '_mpc_'): | |
return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding)) | |
raise ValueError("Arguments need to be mpf or mpc compatible numbers") | |
def nint_distance(ctx, x): | |
r""" | |
Return `(n,d)` where `n` is the nearest integer to `x` and `d` is | |
an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision | |
(measured in bits) lost to cancellation when computing `x-n`. | |
>>> from mpmath import * | |
>>> n, d = nint_distance(5) | |
>>> print(n); print(d) | |
5 | |
-inf | |
>>> n, d = nint_distance(mpf(5)) | |
>>> print(n); print(d) | |
5 | |
-inf | |
>>> n, d = nint_distance(mpf(5.00000001)) | |
>>> print(n); print(d) | |
5 | |
-26 | |
>>> n, d = nint_distance(mpf(4.99999999)) | |
>>> print(n); print(d) | |
5 | |
-26 | |
>>> n, d = nint_distance(mpc(5,10)) | |
>>> print(n); print(d) | |
5 | |
4 | |
>>> n, d = nint_distance(mpc(5,0.000001)) | |
>>> print(n); print(d) | |
5 | |
-19 | |
""" | |
typx = type(x) | |
if typx in int_types: | |
return int(x), ctx.ninf | |
elif typx is rational.mpq: | |
p, q = x._mpq_ | |
n, r = divmod(p, q) | |
if 2*r >= q: | |
n += 1 | |
elif not r: | |
return n, ctx.ninf | |
# log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q) | |
d = bitcount(abs(p-n*q)) - bitcount(q) | |
return n, d | |
if hasattr(x, "_mpf_"): | |
re = x._mpf_ | |
im_dist = ctx.ninf | |
elif hasattr(x, "_mpc_"): | |
re, im = x._mpc_ | |
isign, iman, iexp, ibc = im | |
if iman: | |
im_dist = iexp + ibc | |
elif im == fzero: | |
im_dist = ctx.ninf | |
else: | |
raise ValueError("requires a finite number") | |
else: | |
x = ctx.convert(x) | |
if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"): | |
return ctx.nint_distance(x) | |
else: | |
raise TypeError("requires an mpf/mpc") | |
sign, man, exp, bc = re | |
mag = exp+bc | |
# |x| < 0.5 | |
if mag < 0: | |
n = 0 | |
re_dist = mag | |
elif man: | |
# exact integer | |
if exp >= 0: | |
n = man << exp | |
re_dist = ctx.ninf | |
# exact half-integer | |
elif exp == -1: | |
n = (man>>1)+1 | |
re_dist = 0 | |
else: | |
d = (-exp-1) | |
t = man >> d | |
if t & 1: | |
t += 1 | |
man = (t<<d) - man | |
else: | |
man -= (t<<d) | |
n = t>>1 # int(t)>>1 | |
re_dist = exp+bitcount(man) | |
if sign: | |
n = -n | |
elif re == fzero: | |
re_dist = ctx.ninf | |
n = 0 | |
else: | |
raise ValueError("requires a finite number") | |
return n, max(re_dist, im_dist) | |
def fprod(ctx, factors): | |
r""" | |
Calculates a product containing a finite number of factors (for | |
infinite products, see :func:`~mpmath.nprod`). The factors will be | |
converted to mpmath numbers. | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> fprod([1, 2, 0.5, 7]) | |
mpf('7.0') | |
""" | |
orig = ctx.prec | |
try: | |
v = ctx.one | |
for p in factors: | |
v *= p | |
finally: | |
ctx.prec = orig | |
return +v | |
def rand(ctx): | |
""" | |
Returns an ``mpf`` with value chosen randomly from `[0, 1)`. | |
The number of randomly generated bits in the mantissa is equal | |
to the working precision. | |
""" | |
return ctx.make_mpf(mpf_rand(ctx._prec)) | |
def fraction(ctx, p, q): | |
""" | |
Given Python integers `(p, q)`, returns a lazy ``mpf`` representing | |
the fraction `p/q`. The value is updated with the precision. | |
>>> from mpmath import * | |
>>> mp.dps = 15 | |
>>> a = fraction(1,100) | |
>>> b = mpf(1)/100 | |
>>> print(a); print(b) | |
0.01 | |
0.01 | |
>>> mp.dps = 30 | |
>>> print(a); print(b) # a will be accurate | |
0.01 | |
0.0100000000000000002081668171172 | |
>>> mp.dps = 15 | |
""" | |
return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd), | |
'%s/%s' % (p, q)) | |
def absmin(ctx, x): | |
return abs(ctx.convert(x)) | |
def absmax(ctx, x): | |
return abs(ctx.convert(x)) | |
def _as_points(ctx, x): | |
# XXX: remove this? | |
if hasattr(x, '_mpi_'): | |
a, b = x._mpi_ | |
return [ctx.make_mpf(a), ctx.make_mpf(b)] | |
return x | |
''' | |
def _zetasum(ctx, s, a, b): | |
""" | |
Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small | |
integers. | |
""" | |
a = int(a) | |
b = int(b) | |
s = ctx.convert(s) | |
prec, rounding = ctx._prec_rounding | |
if hasattr(s, '_mpf_'): | |
v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec)) | |
elif hasattr(s, '_mpc_'): | |
v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec)) | |
return v | |
''' | |
def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False): | |
if not (ctx.isint(a) and hasattr(s, "_mpc_")): | |
raise NotImplementedError | |
a = int(a) | |
prec = ctx._prec | |
xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec) | |
xs = [ctx.make_mpc(x) for x in xs] | |
ys = [ctx.make_mpc(y) for y in ys] | |
return xs, ys | |
class PrecisionManager: | |
def __init__(self, ctx, precfun, dpsfun, normalize_output=False): | |
self.ctx = ctx | |
self.precfun = precfun | |
self.dpsfun = dpsfun | |
self.normalize_output = normalize_output | |
def __call__(self, f): | |
def g(*args, **kwargs): | |
orig = self.ctx.prec | |
try: | |
if self.precfun: | |
self.ctx.prec = self.precfun(self.ctx.prec) | |
else: | |
self.ctx.dps = self.dpsfun(self.ctx.dps) | |
if self.normalize_output: | |
v = f(*args, **kwargs) | |
if type(v) is tuple: | |
return tuple([+a for a in v]) | |
return +v | |
else: | |
return f(*args, **kwargs) | |
finally: | |
self.ctx.prec = orig | |
return g | |
def __enter__(self): | |
self.origp = self.ctx.prec | |
if self.precfun: | |
self.ctx.prec = self.precfun(self.ctx.prec) | |
else: | |
self.ctx.dps = self.dpsfun(self.ctx.dps) | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
self.ctx.prec = self.origp | |
return False | |
if __name__ == '__main__': | |
import doctest | |
doctest.testmod() | |