Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
3.85 kB
import sys
from typing import List, TypeVar, Optional, Any, overload, Union, Tuple, Sequence
from numpy import (
ndarray,
dtype,
bool_,
unsignedinteger,
signedinteger,
floating,
complexfloating,
number,
_OrderKACF,
)
from numpy.typing import (
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
_ArrayLikeInt_co,
_ArrayLikeFloat_co,
_ArrayLikeComplex_co,
_DTypeLikeBool,
_DTypeLikeUInt,
_DTypeLikeInt,
_DTypeLikeFloat,
_DTypeLikeComplex,
_DTypeLikeComplex_co,
)
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
_ArrayType = TypeVar(
"_ArrayType",
bound=ndarray[Any, dtype[Union[bool_, number[Any]]]],
)
_OptimizeKind = Union[
None, bool, Literal["greedy", "optimal"], Sequence[Any]
]
_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
_CastingUnsafe = Literal["unsafe"]
__all__: List[str]
# TODO: Properly handle the `casting`-based combinatorics
# TODO: We need to evaluate the content `__subscripts` in order
# to identify whether or an array or scalar is returned. At a cursory
# glance this seems like something that can quite easilly be done with
# a mypy plugin.
# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
@overload
def einsum(
__subscripts: str,
*operands: _ArrayLikeBool_co,
out: None = ...,
dtype: Optional[_DTypeLikeBool] = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
__subscripts: str,
*operands: _ArrayLikeUInt_co,
out: None = ...,
dtype: Optional[_DTypeLikeUInt] = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
__subscripts: str,
*operands: _ArrayLikeInt_co,
out: None = ...,
dtype: Optional[_DTypeLikeInt] = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
__subscripts: str,
*operands: _ArrayLikeFloat_co,
out: None = ...,
dtype: Optional[_DTypeLikeFloat] = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
__subscripts: str,
*operands: _ArrayLikeComplex_co,
out: None = ...,
dtype: Optional[_DTypeLikeComplex] = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
__subscripts: str,
*operands: Any,
casting: _CastingUnsafe,
dtype: Optional[_DTypeLikeComplex_co] = ...,
out: None = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
__subscripts: str,
*operands: _ArrayLikeComplex_co,
out: _ArrayType,
dtype: Optional[_DTypeLikeComplex_co] = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> _ArrayType: ...
@overload
def einsum(
__subscripts: str,
*operands: Any,
out: _ArrayType,
casting: _CastingUnsafe,
dtype: Optional[_DTypeLikeComplex_co] = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
) -> _ArrayType: ...
# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
# It is therefore excluded from the signatures below.
# NOTE: In practice the list consists of a `str` (first element)
# and a variable number of integer tuples.
def einsum_path(
__subscripts: str,
*operands: _ArrayLikeComplex_co,
optimize: _OptimizeKind = ...,
) -> Tuple[List[Any], str]: ...