Spaces:
Running
Running
""" | |
Discrete Fourier Transforms - helper.py | |
""" | |
from numpy.core import integer, empty, arange, asarray, roll | |
from numpy.core.overrides import array_function_dispatch, set_module | |
# Created by Pearu Peterson, September 2002 | |
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq'] | |
integer_types = (int, integer) | |
def _fftshift_dispatcher(x, axes=None): | |
return (x,) | |
def fftshift(x, axes=None): | |
""" | |
Shift the zero-frequency component to the center of the spectrum. | |
This function swaps half-spaces for all axes listed (defaults to all). | |
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
axes : int or shape tuple, optional | |
Axes over which to shift. Default is None, which shifts all axes. | |
Returns | |
------- | |
y : ndarray | |
The shifted array. | |
See Also | |
-------- | |
ifftshift : The inverse of `fftshift`. | |
Examples | |
-------- | |
>>> freqs = np.fft.fftfreq(10, 0.1) | |
>>> freqs | |
array([ 0., 1., 2., ..., -3., -2., -1.]) | |
>>> np.fft.fftshift(freqs) | |
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) | |
Shift the zero-frequency component only along the second axis: | |
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) | |
>>> freqs | |
array([[ 0., 1., 2.], | |
[ 3., 4., -4.], | |
[-3., -2., -1.]]) | |
>>> np.fft.fftshift(freqs, axes=(1,)) | |
array([[ 2., 0., 1.], | |
[-4., 3., 4.], | |
[-1., -3., -2.]]) | |
""" | |
x = asarray(x) | |
if axes is None: | |
axes = tuple(range(x.ndim)) | |
shift = [dim // 2 for dim in x.shape] | |
elif isinstance(axes, integer_types): | |
shift = x.shape[axes] // 2 | |
else: | |
shift = [x.shape[ax] // 2 for ax in axes] | |
return roll(x, shift, axes) | |
def ifftshift(x, axes=None): | |
""" | |
The inverse of `fftshift`. Although identical for even-length `x`, the | |
functions differ by one sample for odd-length `x`. | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
axes : int or shape tuple, optional | |
Axes over which to calculate. Defaults to None, which shifts all axes. | |
Returns | |
------- | |
y : ndarray | |
The shifted array. | |
See Also | |
-------- | |
fftshift : Shift zero-frequency component to the center of the spectrum. | |
Examples | |
-------- | |
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) | |
>>> freqs | |
array([[ 0., 1., 2.], | |
[ 3., 4., -4.], | |
[-3., -2., -1.]]) | |
>>> np.fft.ifftshift(np.fft.fftshift(freqs)) | |
array([[ 0., 1., 2.], | |
[ 3., 4., -4.], | |
[-3., -2., -1.]]) | |
""" | |
x = asarray(x) | |
if axes is None: | |
axes = tuple(range(x.ndim)) | |
shift = [-(dim // 2) for dim in x.shape] | |
elif isinstance(axes, integer_types): | |
shift = -(x.shape[axes] // 2) | |
else: | |
shift = [-(x.shape[ax] // 2) for ax in axes] | |
return roll(x, shift, axes) | |
def fftfreq(n, d=1.0): | |
""" | |
Return the Discrete Fourier Transform sample frequencies. | |
The returned float array `f` contains the frequency bin centers in cycles | |
per unit of the sample spacing (with zero at the start). For instance, if | |
the sample spacing is in seconds, then the frequency unit is cycles/second. | |
Given a window length `n` and a sample spacing `d`:: | |
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even | |
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd | |
Parameters | |
---------- | |
n : int | |
Window length. | |
d : scalar, optional | |
Sample spacing (inverse of the sampling rate). Defaults to 1. | |
Returns | |
------- | |
f : ndarray | |
Array of length `n` containing the sample frequencies. | |
Examples | |
-------- | |
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) | |
>>> fourier = np.fft.fft(signal) | |
>>> n = signal.size | |
>>> timestep = 0.1 | |
>>> freq = np.fft.fftfreq(n, d=timestep) | |
>>> freq | |
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25]) | |
""" | |
if not isinstance(n, integer_types): | |
raise ValueError("n should be an integer") | |
val = 1.0 / (n * d) | |
results = empty(n, int) | |
N = (n-1)//2 + 1 | |
p1 = arange(0, N, dtype=int) | |
results[:N] = p1 | |
p2 = arange(-(n//2), 0, dtype=int) | |
results[N:] = p2 | |
return results * val | |
def rfftfreq(n, d=1.0): | |
""" | |
Return the Discrete Fourier Transform sample frequencies | |
(for usage with rfft, irfft). | |
The returned float array `f` contains the frequency bin centers in cycles | |
per unit of the sample spacing (with zero at the start). For instance, if | |
the sample spacing is in seconds, then the frequency unit is cycles/second. | |
Given a window length `n` and a sample spacing `d`:: | |
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even | |
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd | |
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) | |
the Nyquist frequency component is considered to be positive. | |
Parameters | |
---------- | |
n : int | |
Window length. | |
d : scalar, optional | |
Sample spacing (inverse of the sampling rate). Defaults to 1. | |
Returns | |
------- | |
f : ndarray | |
Array of length ``n//2 + 1`` containing the sample frequencies. | |
Examples | |
-------- | |
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) | |
>>> fourier = np.fft.rfft(signal) | |
>>> n = signal.size | |
>>> sample_rate = 100 | |
>>> freq = np.fft.fftfreq(n, d=1./sample_rate) | |
>>> freq | |
array([ 0., 10., 20., ..., -30., -20., -10.]) | |
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate) | |
>>> freq | |
array([ 0., 10., 20., 30., 40., 50.]) | |
""" | |
if not isinstance(n, integer_types): | |
raise ValueError("n should be an integer") | |
val = 1.0/(n*d) | |
N = n//2 + 1 | |
results = arange(0, N, dtype=int) | |
return results * val | |