Spaces:
Running
Running
""" | |
Wrapper functions to more user-friendly calling of certain math functions | |
whose output data-type is different than the input data-type in certain | |
domains of the input. | |
For example, for functions like `log` with branch cuts, the versions in this | |
module provide the mathematically valid answers in the complex plane:: | |
>>> import math | |
>>> from numpy.lib import scimath | |
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi) | |
True | |
Similarly, `sqrt`, other base logarithms, `power` and trig functions are | |
correctly handled. See their respective docstrings for specific examples. | |
Functions | |
--------- | |
.. autosummary:: | |
:toctree: generated/ | |
sqrt | |
log | |
log2 | |
logn | |
log10 | |
power | |
arccos | |
arcsin | |
arctanh | |
""" | |
import numpy.core.numeric as nx | |
import numpy.core.numerictypes as nt | |
from numpy.core.numeric import asarray, any | |
from numpy.core.overrides import array_function_dispatch | |
from numpy.lib.type_check import isreal | |
__all__ = [ | |
'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin', | |
'arctanh' | |
] | |
_ln2 = nx.log(2.0) | |
def _tocomplex(arr): | |
"""Convert its input `arr` to a complex array. | |
The input is returned as a complex array of the smallest type that will fit | |
the original data: types like single, byte, short, etc. become csingle, | |
while others become cdouble. | |
A copy of the input is always made. | |
Parameters | |
---------- | |
arr : array | |
Returns | |
------- | |
array | |
An array with the same input data as the input but in complex form. | |
Examples | |
-------- | |
First, consider an input of type short: | |
>>> a = np.array([1,2,3],np.short) | |
>>> ac = np.lib.scimath._tocomplex(a); ac | |
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) | |
>>> ac.dtype | |
dtype('complex64') | |
If the input is of type double, the output is correspondingly of the | |
complex double type as well: | |
>>> b = np.array([1,2,3],np.double) | |
>>> bc = np.lib.scimath._tocomplex(b); bc | |
array([1.+0.j, 2.+0.j, 3.+0.j]) | |
>>> bc.dtype | |
dtype('complex128') | |
Note that even if the input was complex to begin with, a copy is still | |
made, since the astype() method always copies: | |
>>> c = np.array([1,2,3],np.csingle) | |
>>> cc = np.lib.scimath._tocomplex(c); cc | |
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) | |
>>> c *= 2; c | |
array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) | |
>>> cc | |
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) | |
""" | |
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte, | |
nt.ushort, nt.csingle)): | |
return arr.astype(nt.csingle) | |
else: | |
return arr.astype(nt.cdouble) | |
def _fix_real_lt_zero(x): | |
"""Convert `x` to complex if it has real, negative components. | |
Otherwise, output is just the array version of the input (via asarray). | |
Parameters | |
---------- | |
x : array_like | |
Returns | |
------- | |
array | |
Examples | |
-------- | |
>>> np.lib.scimath._fix_real_lt_zero([1,2]) | |
array([1, 2]) | |
>>> np.lib.scimath._fix_real_lt_zero([-1,2]) | |
array([-1.+0.j, 2.+0.j]) | |
""" | |
x = asarray(x) | |
if any(isreal(x) & (x < 0)): | |
x = _tocomplex(x) | |
return x | |
def _fix_int_lt_zero(x): | |
"""Convert `x` to double if it has real, negative components. | |
Otherwise, output is just the array version of the input (via asarray). | |
Parameters | |
---------- | |
x : array_like | |
Returns | |
------- | |
array | |
Examples | |
-------- | |
>>> np.lib.scimath._fix_int_lt_zero([1,2]) | |
array([1, 2]) | |
>>> np.lib.scimath._fix_int_lt_zero([-1,2]) | |
array([-1., 2.]) | |
""" | |
x = asarray(x) | |
if any(isreal(x) & (x < 0)): | |
x = x * 1.0 | |
return x | |
def _fix_real_abs_gt_1(x): | |
"""Convert `x` to complex if it has real components x_i with abs(x_i)>1. | |
Otherwise, output is just the array version of the input (via asarray). | |
Parameters | |
---------- | |
x : array_like | |
Returns | |
------- | |
array | |
Examples | |
-------- | |
>>> np.lib.scimath._fix_real_abs_gt_1([0,1]) | |
array([0, 1]) | |
>>> np.lib.scimath._fix_real_abs_gt_1([0,2]) | |
array([0.+0.j, 2.+0.j]) | |
""" | |
x = asarray(x) | |
if any(isreal(x) & (abs(x) > 1)): | |
x = _tocomplex(x) | |
return x | |
def _unary_dispatcher(x): | |
return (x,) | |
def sqrt(x): | |
""" | |
Compute the square root of x. | |
For negative input elements, a complex value is returned | |
(unlike `numpy.sqrt` which returns NaN). | |
Parameters | |
---------- | |
x : array_like | |
The input value(s). | |
Returns | |
------- | |
out : ndarray or scalar | |
The square root of `x`. If `x` was a scalar, so is `out`, | |
otherwise an array is returned. | |
See Also | |
-------- | |
numpy.sqrt | |
Examples | |
-------- | |
For real, non-negative inputs this works just like `numpy.sqrt`: | |
>>> np.lib.scimath.sqrt(1) | |
1.0 | |
>>> np.lib.scimath.sqrt([1, 4]) | |
array([1., 2.]) | |
But it automatically handles negative inputs: | |
>>> np.lib.scimath.sqrt(-1) | |
1j | |
>>> np.lib.scimath.sqrt([-1,4]) | |
array([0.+1.j, 2.+0.j]) | |
""" | |
x = _fix_real_lt_zero(x) | |
return nx.sqrt(x) | |
def log(x): | |
""" | |
Compute the natural logarithm of `x`. | |
Return the "principal value" (for a description of this, see `numpy.log`) | |
of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)`` | |
returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the | |
complex principle value is returned. | |
Parameters | |
---------- | |
x : array_like | |
The value(s) whose log is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The log of the `x` value(s). If `x` was a scalar, so is `out`, | |
otherwise an array is returned. | |
See Also | |
-------- | |
numpy.log | |
Notes | |
----- | |
For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log` | |
(note, however, that otherwise `numpy.log` and this `log` are identical, | |
i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, | |
notably, the complex principle value if ``x.imag != 0``). | |
Examples | |
-------- | |
>>> np.emath.log(np.exp(1)) | |
1.0 | |
Negative arguments are handled "correctly" (recall that | |
``exp(log(x)) == x`` does *not* hold for real ``x < 0``): | |
>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j) | |
True | |
""" | |
x = _fix_real_lt_zero(x) | |
return nx.log(x) | |
def log10(x): | |
""" | |
Compute the logarithm base 10 of `x`. | |
Return the "principal value" (for a description of this, see | |
`numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this | |
is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)`` | |
returns ``inf``). Otherwise, the complex principle value is returned. | |
Parameters | |
---------- | |
x : array_like or scalar | |
The value(s) whose log base 10 is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`, | |
otherwise an array object is returned. | |
See Also | |
-------- | |
numpy.log10 | |
Notes | |
----- | |
For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10` | |
(note, however, that otherwise `numpy.log10` and this `log10` are | |
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, | |
and, notably, the complex principle value if ``x.imag != 0``). | |
Examples | |
-------- | |
(We set the printing precision so the example can be auto-tested) | |
>>> np.set_printoptions(precision=4) | |
>>> np.emath.log10(10**1) | |
1.0 | |
>>> np.emath.log10([-10**1, -10**2, 10**2]) | |
array([1.+1.3644j, 2.+1.3644j, 2.+0.j ]) | |
""" | |
x = _fix_real_lt_zero(x) | |
return nx.log10(x) | |
def _logn_dispatcher(n, x): | |
return (n, x,) | |
def logn(n, x): | |
""" | |
Take log base n of x. | |
If `x` contains negative inputs, the answer is computed and returned in the | |
complex domain. | |
Parameters | |
---------- | |
n : array_like | |
The integer base(s) in which the log is taken. | |
x : array_like | |
The value(s) whose log base `n` is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The log base `n` of the `x` value(s). If `x` was a scalar, so is | |
`out`, otherwise an array is returned. | |
Examples | |
-------- | |
>>> np.set_printoptions(precision=4) | |
>>> np.lib.scimath.logn(2, [4, 8]) | |
array([2., 3.]) | |
>>> np.lib.scimath.logn(2, [-4, -8, 8]) | |
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) | |
""" | |
x = _fix_real_lt_zero(x) | |
n = _fix_real_lt_zero(n) | |
return nx.log(x)/nx.log(n) | |
def log2(x): | |
""" | |
Compute the logarithm base 2 of `x`. | |
Return the "principal value" (for a description of this, see | |
`numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is | |
a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns | |
``inf``). Otherwise, the complex principle value is returned. | |
Parameters | |
---------- | |
x : array_like | |
The value(s) whose log base 2 is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`, | |
otherwise an array is returned. | |
See Also | |
-------- | |
numpy.log2 | |
Notes | |
----- | |
For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2` | |
(note, however, that otherwise `numpy.log2` and this `log2` are | |
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, | |
and, notably, the complex principle value if ``x.imag != 0``). | |
Examples | |
-------- | |
We set the printing precision so the example can be auto-tested: | |
>>> np.set_printoptions(precision=4) | |
>>> np.emath.log2(8) | |
3.0 | |
>>> np.emath.log2([-4, -8, 8]) | |
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) | |
""" | |
x = _fix_real_lt_zero(x) | |
return nx.log2(x) | |
def _power_dispatcher(x, p): | |
return (x, p) | |
def power(x, p): | |
""" | |
Return x to the power p, (x**p). | |
If `x` contains negative values, the output is converted to the | |
complex domain. | |
Parameters | |
---------- | |
x : array_like | |
The input value(s). | |
p : array_like of ints | |
The power(s) to which `x` is raised. If `x` contains multiple values, | |
`p` has to either be a scalar, or contain the same number of values | |
as `x`. In the latter case, the result is | |
``x[0]**p[0], x[1]**p[1], ...``. | |
Returns | |
------- | |
out : ndarray or scalar | |
The result of ``x**p``. If `x` and `p` are scalars, so is `out`, | |
otherwise an array is returned. | |
See Also | |
-------- | |
numpy.power | |
Examples | |
-------- | |
>>> np.set_printoptions(precision=4) | |
>>> np.lib.scimath.power([2, 4], 2) | |
array([ 4, 16]) | |
>>> np.lib.scimath.power([2, 4], -2) | |
array([0.25 , 0.0625]) | |
>>> np.lib.scimath.power([-2, 4], 2) | |
array([ 4.-0.j, 16.+0.j]) | |
""" | |
x = _fix_real_lt_zero(x) | |
p = _fix_int_lt_zero(p) | |
return nx.power(x, p) | |
def arccos(x): | |
""" | |
Compute the inverse cosine of x. | |
Return the "principal value" (for a description of this, see | |
`numpy.arccos`) of the inverse cosine of `x`. For real `x` such that | |
`abs(x) <= 1`, this is a real number in the closed interval | |
:math:`[0, \\pi]`. Otherwise, the complex principle value is returned. | |
Parameters | |
---------- | |
x : array_like or scalar | |
The value(s) whose arccos is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so | |
is `out`, otherwise an array object is returned. | |
See Also | |
-------- | |
numpy.arccos | |
Notes | |
----- | |
For an arccos() that returns ``NAN`` when real `x` is not in the | |
interval ``[-1,1]``, use `numpy.arccos`. | |
Examples | |
-------- | |
>>> np.set_printoptions(precision=4) | |
>>> np.emath.arccos(1) # a scalar is returned | |
0.0 | |
>>> np.emath.arccos([1,2]) | |
array([0.-0.j , 0.-1.317j]) | |
""" | |
x = _fix_real_abs_gt_1(x) | |
return nx.arccos(x) | |
def arcsin(x): | |
""" | |
Compute the inverse sine of x. | |
Return the "principal value" (for a description of this, see | |
`numpy.arcsin`) of the inverse sine of `x`. For real `x` such that | |
`abs(x) <= 1`, this is a real number in the closed interval | |
:math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is | |
returned. | |
Parameters | |
---------- | |
x : array_like or scalar | |
The value(s) whose arcsin is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The inverse sine(s) of the `x` value(s). If `x` was a scalar, so | |
is `out`, otherwise an array object is returned. | |
See Also | |
-------- | |
numpy.arcsin | |
Notes | |
----- | |
For an arcsin() that returns ``NAN`` when real `x` is not in the | |
interval ``[-1,1]``, use `numpy.arcsin`. | |
Examples | |
-------- | |
>>> np.set_printoptions(precision=4) | |
>>> np.emath.arcsin(0) | |
0.0 | |
>>> np.emath.arcsin([0,1]) | |
array([0. , 1.5708]) | |
""" | |
x = _fix_real_abs_gt_1(x) | |
return nx.arcsin(x) | |
def arctanh(x): | |
""" | |
Compute the inverse hyperbolic tangent of `x`. | |
Return the "principal value" (for a description of this, see | |
`numpy.arctanh`) of ``arctanh(x)``. For real `x` such that | |
``abs(x) < 1``, this is a real number. If `abs(x) > 1`, or if `x` is | |
complex, the result is complex. Finally, `x = 1` returns``inf`` and | |
``x=-1`` returns ``-inf``. | |
Parameters | |
---------- | |
x : array_like | |
The value(s) whose arctanh is (are) required. | |
Returns | |
------- | |
out : ndarray or scalar | |
The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was | |
a scalar so is `out`, otherwise an array is returned. | |
See Also | |
-------- | |
numpy.arctanh | |
Notes | |
----- | |
For an arctanh() that returns ``NAN`` when real `x` is not in the | |
interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does | |
return +/-inf for ``x = +/-1``). | |
Examples | |
-------- | |
>>> np.set_printoptions(precision=4) | |
>>> from numpy.testing import suppress_warnings | |
>>> with suppress_warnings() as sup: | |
... sup.filter(RuntimeWarning) | |
... np.emath.arctanh(np.eye(2)) | |
array([[inf, 0.], | |
[ 0., inf]]) | |
>>> np.emath.arctanh([1j]) | |
array([0.+0.7854j]) | |
""" | |
x = _fix_real_abs_gt_1(x) | |
return nx.arctanh(x) | |