Spaces:
Running
Running
""":mod:`numpy.ma..mrecords` | |
Defines the equivalent of :class:`numpy.recarrays` for masked arrays, | |
where fields can be accessed as attributes. | |
Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes | |
and the masking of individual fields. | |
.. moduleauthor:: Pierre Gerard-Marchant | |
""" | |
# We should make sure that no field is called '_mask','mask','_fieldmask', | |
# or whatever restricted keywords. An idea would be to no bother in the | |
# first place, and then rename the invalid fields with a trailing | |
# underscore. Maybe we could just overload the parser function ? | |
from numpy.ma import ( | |
MAError, MaskedArray, masked, nomask, masked_array, getdata, | |
getmaskarray, filled | |
) | |
import numpy.ma as ma | |
import warnings | |
import numpy as np | |
from numpy import ( | |
bool_, dtype, ndarray, recarray, array as narray | |
) | |
from numpy.core.records import ( | |
fromarrays as recfromarrays, fromrecords as recfromrecords | |
) | |
_byteorderconv = np.core.records._byteorderconv | |
_check_fill_value = ma.core._check_fill_value | |
__all__ = [ | |
'MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords', | |
'fromtextfile', 'addfield', | |
] | |
reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype'] | |
def _checknames(descr, names=None): | |
""" | |
Checks that field names ``descr`` are not reserved keywords. | |
If this is the case, a default 'f%i' is substituted. If the argument | |
`names` is not None, updates the field names to valid names. | |
""" | |
ndescr = len(descr) | |
default_names = ['f%i' % i for i in range(ndescr)] | |
if names is None: | |
new_names = default_names | |
else: | |
if isinstance(names, (tuple, list)): | |
new_names = names | |
elif isinstance(names, str): | |
new_names = names.split(',') | |
else: | |
raise NameError(f'illegal input names {names!r}') | |
nnames = len(new_names) | |
if nnames < ndescr: | |
new_names += default_names[nnames:] | |
ndescr = [] | |
for (n, d, t) in zip(new_names, default_names, descr.descr): | |
if n in reserved_fields: | |
if t[0] in reserved_fields: | |
ndescr.append((d, t[1])) | |
else: | |
ndescr.append(t) | |
else: | |
ndescr.append((n, t[1])) | |
return np.dtype(ndescr) | |
def _get_fieldmask(self): | |
mdescr = [(n, '|b1') for n in self.dtype.names] | |
fdmask = np.empty(self.shape, dtype=mdescr) | |
fdmask.flat = tuple([False] * len(mdescr)) | |
return fdmask | |
class MaskedRecords(MaskedArray): | |
""" | |
Attributes | |
---------- | |
_data : recarray | |
Underlying data, as a record array. | |
_mask : boolean array | |
Mask of the records. A record is masked when all its fields are | |
masked. | |
_fieldmask : boolean recarray | |
Record array of booleans, setting the mask of each individual field | |
of each record. | |
_fill_value : record | |
Filling values for each field. | |
""" | |
def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None, | |
formats=None, names=None, titles=None, | |
byteorder=None, aligned=False, | |
mask=nomask, hard_mask=False, fill_value=None, keep_mask=True, | |
copy=False, | |
**options): | |
self = recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset, | |
strides=strides, formats=formats, names=names, | |
titles=titles, byteorder=byteorder, | |
aligned=aligned,) | |
mdtype = ma.make_mask_descr(self.dtype) | |
if mask is nomask or not np.size(mask): | |
if not keep_mask: | |
self._mask = tuple([False] * len(mdtype)) | |
else: | |
mask = np.array(mask, copy=copy) | |
if mask.shape != self.shape: | |
(nd, nm) = (self.size, mask.size) | |
if nm == 1: | |
mask = np.resize(mask, self.shape) | |
elif nm == nd: | |
mask = np.reshape(mask, self.shape) | |
else: | |
msg = "Mask and data not compatible: data size is %i, " + \ | |
"mask size is %i." | |
raise MAError(msg % (nd, nm)) | |
copy = True | |
if not keep_mask: | |
self.__setmask__(mask) | |
self._sharedmask = True | |
else: | |
if mask.dtype == mdtype: | |
_mask = mask | |
else: | |
_mask = np.array([tuple([m] * len(mdtype)) for m in mask], | |
dtype=mdtype) | |
self._mask = _mask | |
return self | |
def __array_finalize__(self, obj): | |
# Make sure we have a _fieldmask by default | |
_mask = getattr(obj, '_mask', None) | |
if _mask is None: | |
objmask = getattr(obj, '_mask', nomask) | |
_dtype = ndarray.__getattribute__(self, 'dtype') | |
if objmask is nomask: | |
_mask = ma.make_mask_none(self.shape, dtype=_dtype) | |
else: | |
mdescr = ma.make_mask_descr(_dtype) | |
_mask = narray([tuple([m] * len(mdescr)) for m in objmask], | |
dtype=mdescr).view(recarray) | |
# Update some of the attributes | |
_dict = self.__dict__ | |
_dict.update(_mask=_mask) | |
self._update_from(obj) | |
if _dict['_baseclass'] == ndarray: | |
_dict['_baseclass'] = recarray | |
return | |
def _data(self): | |
""" | |
Returns the data as a recarray. | |
""" | |
return ndarray.view(self, recarray) | |
def _fieldmask(self): | |
""" | |
Alias to mask. | |
""" | |
return self._mask | |
def __len__(self): | |
""" | |
Returns the length | |
""" | |
# We have more than one record | |
if self.ndim: | |
return len(self._data) | |
# We have only one record: return the nb of fields | |
return len(self.dtype) | |
def __getattribute__(self, attr): | |
try: | |
return object.__getattribute__(self, attr) | |
except AttributeError: | |
# attr must be a fieldname | |
pass | |
fielddict = ndarray.__getattribute__(self, 'dtype').fields | |
try: | |
res = fielddict[attr][:2] | |
except (TypeError, KeyError) as e: | |
raise AttributeError( | |
f'record array has no attribute {attr}') from e | |
# So far, so good | |
_localdict = ndarray.__getattribute__(self, '__dict__') | |
_data = ndarray.view(self, _localdict['_baseclass']) | |
obj = _data.getfield(*res) | |
if obj.dtype.names is not None: | |
raise NotImplementedError("MaskedRecords is currently limited to" | |
"simple records.") | |
# Get some special attributes | |
# Reset the object's mask | |
hasmasked = False | |
_mask = _localdict.get('_mask', None) | |
if _mask is not None: | |
try: | |
_mask = _mask[attr] | |
except IndexError: | |
# Couldn't find a mask: use the default (nomask) | |
pass | |
tp_len = len(_mask.dtype) | |
hasmasked = _mask.view((bool, ((tp_len,) if tp_len else ()))).any() | |
if (obj.shape or hasmasked): | |
obj = obj.view(MaskedArray) | |
obj._baseclass = ndarray | |
obj._isfield = True | |
obj._mask = _mask | |
# Reset the field values | |
_fill_value = _localdict.get('_fill_value', None) | |
if _fill_value is not None: | |
try: | |
obj._fill_value = _fill_value[attr] | |
except ValueError: | |
obj._fill_value = None | |
else: | |
obj = obj.item() | |
return obj | |
def __setattr__(self, attr, val): | |
""" | |
Sets the attribute attr to the value val. | |
""" | |
# Should we call __setmask__ first ? | |
if attr in ['mask', 'fieldmask']: | |
self.__setmask__(val) | |
return | |
# Create a shortcut (so that we don't have to call getattr all the time) | |
_localdict = object.__getattribute__(self, '__dict__') | |
# Check whether we're creating a new field | |
newattr = attr not in _localdict | |
try: | |
# Is attr a generic attribute ? | |
ret = object.__setattr__(self, attr, val) | |
except Exception: | |
# Not a generic attribute: exit if it's not a valid field | |
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} | |
optinfo = ndarray.__getattribute__(self, '_optinfo') or {} | |
if not (attr in fielddict or attr in optinfo): | |
raise | |
else: | |
# Get the list of names | |
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {} | |
# Check the attribute | |
if attr not in fielddict: | |
return ret | |
if newattr: | |
# We just added this one or this setattr worked on an | |
# internal attribute. | |
try: | |
object.__delattr__(self, attr) | |
except Exception: | |
return ret | |
# Let's try to set the field | |
try: | |
res = fielddict[attr][:2] | |
except (TypeError, KeyError) as e: | |
raise AttributeError( | |
f'record array has no attribute {attr}') from e | |
if val is masked: | |
_fill_value = _localdict['_fill_value'] | |
if _fill_value is not None: | |
dval = _localdict['_fill_value'][attr] | |
else: | |
dval = val | |
mval = True | |
else: | |
dval = filled(val) | |
mval = getmaskarray(val) | |
obj = ndarray.__getattribute__(self, '_data').setfield(dval, *res) | |
_localdict['_mask'].__setitem__(attr, mval) | |
return obj | |
def __getitem__(self, indx): | |
""" | |
Returns all the fields sharing the same fieldname base. | |
The fieldname base is either `_data` or `_mask`. | |
""" | |
_localdict = self.__dict__ | |
_mask = ndarray.__getattribute__(self, '_mask') | |
_data = ndarray.view(self, _localdict['_baseclass']) | |
# We want a field | |
if isinstance(indx, str): | |
# Make sure _sharedmask is True to propagate back to _fieldmask | |
# Don't use _set_mask, there are some copies being made that | |
# break propagation Don't force the mask to nomask, that wreaks | |
# easy masking | |
obj = _data[indx].view(MaskedArray) | |
obj._mask = _mask[indx] | |
obj._sharedmask = True | |
fval = _localdict['_fill_value'] | |
if fval is not None: | |
obj._fill_value = fval[indx] | |
# Force to masked if the mask is True | |
if not obj.ndim and obj._mask: | |
return masked | |
return obj | |
# We want some elements. | |
# First, the data. | |
obj = np.array(_data[indx], copy=False).view(mrecarray) | |
obj._mask = np.array(_mask[indx], copy=False).view(recarray) | |
return obj | |
def __setitem__(self, indx, value): | |
""" | |
Sets the given record to value. | |
""" | |
MaskedArray.__setitem__(self, indx, value) | |
if isinstance(indx, str): | |
self._mask[indx] = ma.getmaskarray(value) | |
def __str__(self): | |
""" | |
Calculates the string representation. | |
""" | |
if self.size > 1: | |
mstr = [f"({','.join([str(i) for i in s])})" | |
for s in zip(*[getattr(self, f) for f in self.dtype.names])] | |
return f"[{', '.join(mstr)}]" | |
else: | |
mstr = [f"{','.join([str(i) for i in s])}" | |
for s in zip([getattr(self, f) for f in self.dtype.names])] | |
return f"({', '.join(mstr)})" | |
def __repr__(self): | |
""" | |
Calculates the repr representation. | |
""" | |
_names = self.dtype.names | |
fmt = "%%%is : %%s" % (max([len(n) for n in _names]) + 4,) | |
reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names] | |
reprstr.insert(0, 'masked_records(') | |
reprstr.extend([fmt % (' fill_value', self.fill_value), | |
' )']) | |
return str("\n".join(reprstr)) | |
def view(self, dtype=None, type=None): | |
""" | |
Returns a view of the mrecarray. | |
""" | |
# OK, basic copy-paste from MaskedArray.view. | |
if dtype is None: | |
if type is None: | |
output = ndarray.view(self) | |
else: | |
output = ndarray.view(self, type) | |
# Here again. | |
elif type is None: | |
try: | |
if issubclass(dtype, ndarray): | |
output = ndarray.view(self, dtype) | |
dtype = None | |
else: | |
output = ndarray.view(self, dtype) | |
# OK, there's the change | |
except TypeError: | |
dtype = np.dtype(dtype) | |
# we need to revert to MaskedArray, but keeping the possibility | |
# of subclasses (eg, TimeSeriesRecords), so we'll force a type | |
# set to the first parent | |
if dtype.fields is None: | |
basetype = self.__class__.__bases__[0] | |
output = self.__array__().view(dtype, basetype) | |
output._update_from(self) | |
else: | |
output = ndarray.view(self, dtype) | |
output._fill_value = None | |
else: | |
output = ndarray.view(self, dtype, type) | |
# Update the mask, just like in MaskedArray.view | |
if (getattr(output, '_mask', nomask) is not nomask): | |
mdtype = ma.make_mask_descr(output.dtype) | |
output._mask = self._mask.view(mdtype, ndarray) | |
output._mask.shape = output.shape | |
return output | |
def harden_mask(self): | |
""" | |
Forces the mask to hard. | |
""" | |
self._hardmask = True | |
def soften_mask(self): | |
""" | |
Forces the mask to soft | |
""" | |
self._hardmask = False | |
def copy(self): | |
""" | |
Returns a copy of the masked record. | |
""" | |
copied = self._data.copy().view(type(self)) | |
copied._mask = self._mask.copy() | |
return copied | |
def tolist(self, fill_value=None): | |
""" | |
Return the data portion of the array as a list. | |
Data items are converted to the nearest compatible Python type. | |
Masked values are converted to fill_value. If fill_value is None, | |
the corresponding entries in the output list will be ``None``. | |
""" | |
if fill_value is not None: | |
return self.filled(fill_value).tolist() | |
result = narray(self.filled().tolist(), dtype=object) | |
mask = narray(self._mask.tolist()) | |
result[mask] = None | |
return result.tolist() | |
def __getstate__(self): | |
"""Return the internal state of the masked array. | |
This is for pickling. | |
""" | |
state = (1, | |
self.shape, | |
self.dtype, | |
self.flags.fnc, | |
self._data.tobytes(), | |
self._mask.tobytes(), | |
self._fill_value, | |
) | |
return state | |
def __setstate__(self, state): | |
""" | |
Restore the internal state of the masked array. | |
This is for pickling. ``state`` is typically the output of the | |
``__getstate__`` output, and is a 5-tuple: | |
- class name | |
- a tuple giving the shape of the data | |
- a typecode for the data | |
- a binary string for the data | |
- a binary string for the mask. | |
""" | |
(ver, shp, typ, isf, raw, msk, flv) = state | |
ndarray.__setstate__(self, (shp, typ, isf, raw)) | |
mdtype = dtype([(k, bool_) for (k, _) in self.dtype.descr]) | |
self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk)) | |
self.fill_value = flv | |
def __reduce__(self): | |
""" | |
Return a 3-tuple for pickling a MaskedArray. | |
""" | |
return (_mrreconstruct, | |
(self.__class__, self._baseclass, (0,), 'b',), | |
self.__getstate__()) | |
def _mrreconstruct(subtype, baseclass, baseshape, basetype,): | |
""" | |
Build a new MaskedArray from the information stored in a pickle. | |
""" | |
_data = ndarray.__new__(baseclass, baseshape, basetype).view(subtype) | |
_mask = ndarray.__new__(ndarray, baseshape, 'b1') | |
return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) | |
mrecarray = MaskedRecords | |
############################################################################### | |
# Constructors # | |
############################################################################### | |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, | |
names=None, titles=None, aligned=False, byteorder=None, | |
fill_value=None): | |
""" | |
Creates a mrecarray from a (flat) list of masked arrays. | |
Parameters | |
---------- | |
arraylist : sequence | |
A list of (masked) arrays. Each element of the sequence is first converted | |
to a masked array if needed. If a 2D array is passed as argument, it is | |
processed line by line | |
dtype : {None, dtype}, optional | |
Data type descriptor. | |
shape : {None, integer}, optional | |
Number of records. If None, shape is defined from the shape of the | |
first array in the list. | |
formats : {None, sequence}, optional | |
Sequence of formats for each individual field. If None, the formats will | |
be autodetected by inspecting the fields and selecting the highest dtype | |
possible. | |
names : {None, sequence}, optional | |
Sequence of the names of each field. | |
fill_value : {None, sequence}, optional | |
Sequence of data to be used as filling values. | |
Notes | |
----- | |
Lists of tuples should be preferred over lists of lists for faster processing. | |
""" | |
datalist = [getdata(x) for x in arraylist] | |
masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] | |
_array = recfromarrays(datalist, | |
dtype=dtype, shape=shape, formats=formats, | |
names=names, titles=titles, aligned=aligned, | |
byteorder=byteorder).view(mrecarray) | |
_array._mask.flat = list(zip(*masklist)) | |
if fill_value is not None: | |
_array.fill_value = fill_value | |
return _array | |
def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None, | |
titles=None, aligned=False, byteorder=None, | |
fill_value=None, mask=nomask): | |
""" | |
Creates a MaskedRecords from a list of records. | |
Parameters | |
---------- | |
reclist : sequence | |
A list of records. Each element of the sequence is first converted | |
to a masked array if needed. If a 2D array is passed as argument, it is | |
processed line by line | |
dtype : {None, dtype}, optional | |
Data type descriptor. | |
shape : {None,int}, optional | |
Number of records. If None, ``shape`` is defined from the shape of the | |
first array in the list. | |
formats : {None, sequence}, optional | |
Sequence of formats for each individual field. If None, the formats will | |
be autodetected by inspecting the fields and selecting the highest dtype | |
possible. | |
names : {None, sequence}, optional | |
Sequence of the names of each field. | |
fill_value : {None, sequence}, optional | |
Sequence of data to be used as filling values. | |
mask : {nomask, sequence}, optional. | |
External mask to apply on the data. | |
Notes | |
----- | |
Lists of tuples should be preferred over lists of lists for faster processing. | |
""" | |
# Grab the initial _fieldmask, if needed: | |
_mask = getattr(reclist, '_mask', None) | |
# Get the list of records. | |
if isinstance(reclist, ndarray): | |
# Make sure we don't have some hidden mask | |
if isinstance(reclist, MaskedArray): | |
reclist = reclist.filled().view(ndarray) | |
# Grab the initial dtype, just in case | |
if dtype is None: | |
dtype = reclist.dtype | |
reclist = reclist.tolist() | |
mrec = recfromrecords(reclist, dtype=dtype, shape=shape, formats=formats, | |
names=names, titles=titles, | |
aligned=aligned, byteorder=byteorder).view(mrecarray) | |
# Set the fill_value if needed | |
if fill_value is not None: | |
mrec.fill_value = fill_value | |
# Now, let's deal w/ the mask | |
if mask is not nomask: | |
mask = np.array(mask, copy=False) | |
maskrecordlength = len(mask.dtype) | |
if maskrecordlength: | |
mrec._mask.flat = mask | |
elif mask.ndim == 2: | |
mrec._mask.flat = [tuple(m) for m in mask] | |
else: | |
mrec.__setmask__(mask) | |
if _mask is not None: | |
mrec._mask[:] = _mask | |
return mrec | |
def _guessvartypes(arr): | |
""" | |
Tries to guess the dtypes of the str_ ndarray `arr`. | |
Guesses by testing element-wise conversion. Returns a list of dtypes. | |
The array is first converted to ndarray. If the array is 2D, the test | |
is performed on the first line. An exception is raised if the file is | |
3D or more. | |
""" | |
vartypes = [] | |
arr = np.asarray(arr) | |
if arr.ndim == 2: | |
arr = arr[0] | |
elif arr.ndim > 2: | |
raise ValueError("The array should be 2D at most!") | |
# Start the conversion loop. | |
for f in arr: | |
try: | |
int(f) | |
except (ValueError, TypeError): | |
try: | |
float(f) | |
except (ValueError, TypeError): | |
try: | |
complex(f) | |
except (ValueError, TypeError): | |
vartypes.append(arr.dtype) | |
else: | |
vartypes.append(np.dtype(complex)) | |
else: | |
vartypes.append(np.dtype(float)) | |
else: | |
vartypes.append(np.dtype(int)) | |
return vartypes | |
def openfile(fname): | |
""" | |
Opens the file handle of file `fname`. | |
""" | |
# A file handle | |
if hasattr(fname, 'readline'): | |
return fname | |
# Try to open the file and guess its type | |
try: | |
f = open(fname) | |
except IOError as e: | |
raise IOError(f"No such file: '{fname}'") from e | |
if f.readline()[:2] != "\\x": | |
f.seek(0, 0) | |
return f | |
f.close() | |
raise NotImplementedError("Wow, binary file") | |
def fromtextfile(fname, delimitor=None, commentchar='#', missingchar='', | |
varnames=None, vartypes=None): | |
""" | |
Creates a mrecarray from data stored in the file `filename`. | |
Parameters | |
---------- | |
fname : {file name/handle} | |
Handle of an opened file. | |
delimitor : {None, string}, optional | |
Alphanumeric character used to separate columns in the file. | |
If None, any (group of) white spacestring(s) will be used. | |
commentchar : {'#', string}, optional | |
Alphanumeric character used to mark the start of a comment. | |
missingchar : {'', string}, optional | |
String indicating missing data, and used to create the masks. | |
varnames : {None, sequence}, optional | |
Sequence of the variable names. If None, a list will be created from | |
the first non empty line of the file. | |
vartypes : {None, sequence}, optional | |
Sequence of the variables dtypes. If None, it will be estimated from | |
the first non-commented line. | |
Ultra simple: the varnames are in the header, one line""" | |
# Try to open the file. | |
ftext = openfile(fname) | |
# Get the first non-empty line as the varnames | |
while True: | |
line = ftext.readline() | |
firstline = line[:line.find(commentchar)].strip() | |
_varnames = firstline.split(delimitor) | |
if len(_varnames) > 1: | |
break | |
if varnames is None: | |
varnames = _varnames | |
# Get the data. | |
_variables = masked_array([line.strip().split(delimitor) for line in ftext | |
if line[0] != commentchar and len(line) > 1]) | |
(_, nfields) = _variables.shape | |
ftext.close() | |
# Try to guess the dtype. | |
if vartypes is None: | |
vartypes = _guessvartypes(_variables[0]) | |
else: | |
vartypes = [np.dtype(v) for v in vartypes] | |
if len(vartypes) != nfields: | |
msg = "Attempting to %i dtypes for %i fields!" | |
msg += " Reverting to default." | |
warnings.warn(msg % (len(vartypes), nfields), stacklevel=2) | |
vartypes = _guessvartypes(_variables[0]) | |
# Construct the descriptor. | |
mdescr = [(n, f) for (n, f) in zip(varnames, vartypes)] | |
mfillv = [ma.default_fill_value(f) for f in vartypes] | |
# Get the data and the mask. | |
# We just need a list of masked_arrays. It's easier to create it like that: | |
_mask = (_variables.T == missingchar) | |
_datalist = [masked_array(a, mask=m, dtype=t, fill_value=f) | |
for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)] | |
return fromarrays(_datalist, dtype=mdescr) | |
def addfield(mrecord, newfield, newfieldname=None): | |
"""Adds a new field to the masked record array | |
Uses `newfield` as data and `newfieldname` as name. If `newfieldname` | |
is None, the new field name is set to 'fi', where `i` is the number of | |
existing fields. | |
""" | |
_data = mrecord._data | |
_mask = mrecord._mask | |
if newfieldname is None or newfieldname in reserved_fields: | |
newfieldname = 'f%i' % len(_data.dtype) | |
newfield = ma.array(newfield) | |
# Get the new data. | |
# Create a new empty recarray | |
newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) | |
newdata = recarray(_data.shape, newdtype) | |
# Add the existing field | |
[newdata.setfield(_data.getfield(*f), *f) | |
for f in _data.dtype.fields.values()] | |
# Add the new field | |
newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) | |
newdata = newdata.view(MaskedRecords) | |
# Get the new mask | |
# Create a new empty recarray | |
newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) | |
newmask = recarray(_data.shape, newmdtype) | |
# Add the old masks | |
[newmask.setfield(_mask.getfield(*f), *f) | |
for f in _mask.dtype.fields.values()] | |
# Add the mask of the new field | |
newmask.setfield(getmaskarray(newfield), | |
*newmask.dtype.fields[newfieldname]) | |
newdata._mask = newmask | |
return newdata | |