Kano001's picture
Upload 280 files
e11e4fe verified
raw
history blame
27.8 kB
from typing import Dict, cast, List, Tuple, Optional
from collections import defaultdict
import attr
from mlagents.trainers.torch_entities.components.reward_providers.extrinsic_reward_provider import (
ExtrinsicRewardProvider,
)
import numpy as np
from mlagents.torch_utils import torch, default_device
from mlagents.trainers.buffer import (
AgentBuffer,
BufferKey,
RewardSignalUtil,
AgentBufferField,
)
from mlagents_envs.timers import timed
from mlagents_envs.base_env import ObservationSpec, ActionSpec
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.settings import (
RewardSignalSettings,
RewardSignalType,
TrainerSettings,
NetworkSettings,
OnPolicyHyperparamSettings,
ScheduleType,
)
from mlagents.trainers.torch_entities.networks import Critic, MultiAgentNetworkBody
from mlagents.trainers.torch_entities.decoders import ValueHeads
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.torch_entities.action_log_probs import ActionLogProbs
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.trajectory import ObsUtil, GroupObsUtil
from mlagents_envs.logging_util import get_logger
logger = get_logger(__name__)
@attr.s(auto_attribs=True)
class POCASettings(OnPolicyHyperparamSettings):
beta: float = 5.0e-3
epsilon: float = 0.2
lambd: float = 0.95
num_epoch: int = 3
learning_rate_schedule: ScheduleType = ScheduleType.LINEAR
beta_schedule: ScheduleType = ScheduleType.LINEAR
epsilon_schedule: ScheduleType = ScheduleType.LINEAR
class TorchPOCAOptimizer(TorchOptimizer):
class POCAValueNetwork(torch.nn.Module, Critic):
"""
The POCAValueNetwork uses the MultiAgentNetworkBody to compute the value
and POCA baseline for a variable number of agents in a group that all
share the same observation and action space.
"""
def __init__(
self,
stream_names: List[str],
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
):
torch.nn.Module.__init__(self)
self.network_body = MultiAgentNetworkBody(
observation_specs, network_settings, action_spec
)
if network_settings.memory is not None:
encoding_size = network_settings.memory.memory_size // 2
else:
encoding_size = network_settings.hidden_units
self.value_heads = ValueHeads(stream_names, encoding_size + 1, 1)
# The + 1 is for the normalized number of agents
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def update_normalization(self, buffer: AgentBuffer) -> None:
self.network_body.update_normalization(buffer)
def baseline(
self,
obs_without_actions: List[torch.Tensor],
obs_with_actions: Tuple[List[List[torch.Tensor]], List[AgentAction]],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
The POCA baseline marginalizes the action of the agent associated with self_obs.
It calls the forward pass of the MultiAgentNetworkBody with the state action
pairs of groupmates but just the state of the agent in question.
:param obs_without_actions: The obs of the agent for which to compute the baseline.
:param obs_with_actions: Tuple of observations and actions for all groupmates.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of Dict of reward stream to tensor and critic memories.
"""
(obs, actions) = obs_with_actions
encoding, memories = self.network_body(
obs_only=[obs_without_actions],
obs=obs,
actions=actions,
memories=memories,
sequence_length=sequence_length,
)
value_outputs, critic_mem_out = self.forward(
encoding, memories, sequence_length
)
return value_outputs, critic_mem_out
def critic_pass(
self,
obs: List[List[torch.Tensor]],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
A centralized value function. It calls the forward pass of MultiAgentNetworkBody
with just the states of all agents.
:param obs: List of observations for all agents in group
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of Dict of reward stream to tensor and critic memories.
"""
encoding, memories = self.network_body(
obs_only=obs,
obs=[],
actions=[],
memories=memories,
sequence_length=sequence_length,
)
value_outputs, critic_mem_out = self.forward(
encoding, memories, sequence_length
)
return value_outputs, critic_mem_out
def forward(
self,
encoding: torch.Tensor,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
output = self.value_heads(encoding)
return output, memories
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
"""
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy.
:param policy: A TorchPolicy object that will be updated by this POCA Optimizer.
:param trainer_params: Trainer parameters dictionary that specifies the
properties of the trainer.
"""
# Create the graph here to give more granular control of the TF graph to the Optimizer.
super().__init__(policy, trainer_settings)
reward_signal_configs = trainer_settings.reward_signals
reward_signal_names = [key.value for key, _ in reward_signal_configs.items()]
self._critic = TorchPOCAOptimizer.POCAValueNetwork(
reward_signal_names,
policy.behavior_spec.observation_specs,
network_settings=trainer_settings.network_settings,
action_spec=policy.behavior_spec.action_spec,
)
# Move to GPU if needed
self._critic.to(default_device())
params = list(self.policy.actor.parameters()) + list(self.critic.parameters())
self.hyperparameters: POCASettings = cast(
POCASettings, trainer_settings.hyperparameters
)
self.decay_learning_rate = ModelUtils.DecayedValue(
self.hyperparameters.learning_rate_schedule,
self.hyperparameters.learning_rate,
1e-10,
self.trainer_settings.max_steps,
)
self.decay_epsilon = ModelUtils.DecayedValue(
self.hyperparameters.epsilon_schedule,
self.hyperparameters.epsilon,
0.1,
self.trainer_settings.max_steps,
)
self.decay_beta = ModelUtils.DecayedValue(
self.hyperparameters.beta_schedule,
self.hyperparameters.beta,
1e-5,
self.trainer_settings.max_steps,
)
self.optimizer = torch.optim.Adam(
params, lr=self.trainer_settings.hyperparameters.learning_rate
)
self.stats_name_to_update_name = {
"Losses/Value Loss": "value_loss",
"Losses/Policy Loss": "policy_loss",
}
self.stream_names = list(self.reward_signals.keys())
self.value_memory_dict: Dict[str, torch.Tensor] = {}
self.baseline_memory_dict: Dict[str, torch.Tensor] = {}
def create_reward_signals(
self, reward_signal_configs: Dict[RewardSignalType, RewardSignalSettings]
) -> None:
"""
Create reward signals. Override default to provide warnings for Curiosity and
GAIL, and make sure Extrinsic adds team rewards.
:param reward_signal_configs: Reward signal config.
"""
for reward_signal in reward_signal_configs.keys():
if reward_signal != RewardSignalType.EXTRINSIC:
logger.warning(
f"Reward signal {reward_signal.value.capitalize()} is not supported with the POCA trainer; "
"results may be unexpected."
)
super().create_reward_signals(reward_signal_configs)
# Make sure we add the groupmate rewards in POCA, so agents learn how to help each
# other achieve individual rewards as well
for reward_provider in self.reward_signals.values():
if isinstance(reward_provider, ExtrinsicRewardProvider):
reward_provider.add_groupmate_rewards = True
@property
def critic(self):
return self._critic
@timed
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
"""
Performs update on model.
:param batch: Batch of experiences.
:param num_sequences: Number of sequences to process.
:return: Results of update.
"""
# Get decayed parameters
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
decay_eps = self.decay_epsilon.get_value(self.policy.get_current_step())
decay_bet = self.decay_beta.get_value(self.policy.get_current_step())
returns = {}
old_values = {}
old_baseline_values = {}
for name in self.reward_signals:
old_values[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.value_estimates_key(name)]
)
returns[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.returns_key(name)]
)
old_baseline_values[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.baseline_estimates_key(name)]
)
n_obs = len(self.policy.behavior_spec.observation_specs)
current_obs = ObsUtil.from_buffer(batch, n_obs)
# Convert to tensors
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
groupmate_obs = GroupObsUtil.from_buffer(batch, n_obs)
groupmate_obs = [
[ModelUtils.list_to_tensor(obs) for obs in _groupmate_obs]
for _groupmate_obs in groupmate_obs
]
act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK])
actions = AgentAction.from_buffer(batch)
groupmate_actions = AgentAction.group_from_buffer(batch)
memories = [
ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i])
for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length)
]
if len(memories) > 0:
memories = torch.stack(memories).unsqueeze(0)
value_memories = [
ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i])
for i in range(
0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length
)
]
baseline_memories = [
ModelUtils.list_to_tensor(batch[BufferKey.BASELINE_MEMORY][i])
for i in range(
0, len(batch[BufferKey.BASELINE_MEMORY]), self.policy.sequence_length
)
]
if len(value_memories) > 0:
value_memories = torch.stack(value_memories).unsqueeze(0)
baseline_memories = torch.stack(baseline_memories).unsqueeze(0)
run_out = self.policy.actor.get_stats(
current_obs,
actions,
masks=act_masks,
memories=memories,
sequence_length=self.policy.sequence_length,
)
log_probs = run_out["log_probs"]
entropy = run_out["entropy"]
all_obs = [current_obs] + groupmate_obs
values, _ = self.critic.critic_pass(
all_obs,
memories=value_memories,
sequence_length=self.policy.sequence_length,
)
groupmate_obs_and_actions = (groupmate_obs, groupmate_actions)
baselines, _ = self.critic.baseline(
current_obs,
groupmate_obs_and_actions,
memories=baseline_memories,
sequence_length=self.policy.sequence_length,
)
old_log_probs = ActionLogProbs.from_buffer(batch).flatten()
log_probs = log_probs.flatten()
loss_masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool)
baseline_loss = ModelUtils.trust_region_value_loss(
baselines, old_baseline_values, returns, decay_eps, loss_masks
)
value_loss = ModelUtils.trust_region_value_loss(
values, old_values, returns, decay_eps, loss_masks
)
policy_loss = ModelUtils.trust_region_policy_loss(
ModelUtils.list_to_tensor(batch[BufferKey.ADVANTAGES]),
log_probs,
old_log_probs,
loss_masks,
decay_eps,
)
loss = (
policy_loss
+ 0.5 * (value_loss + 0.5 * baseline_loss)
- decay_bet * ModelUtils.masked_mean(entropy, loss_masks)
)
# Set optimizer learning rate
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
update_stats = {
# NOTE: abs() is not technically correct, but matches the behavior in TensorFlow.
# TODO: After PyTorch is default, change to something more correct.
"Losses/Policy Loss": torch.abs(policy_loss).item(),
"Losses/Value Loss": value_loss.item(),
"Losses/Baseline Loss": baseline_loss.item(),
"Policy/Learning Rate": decay_lr,
"Policy/Epsilon": decay_eps,
"Policy/Beta": decay_bet,
}
return update_stats
def get_modules(self):
modules = {"Optimizer:adam": self.optimizer, "Optimizer:critic": self._critic}
for reward_provider in self.reward_signals.values():
modules.update(reward_provider.get_modules())
return modules
def _evaluate_by_sequence_team(
self,
self_obs: List[torch.Tensor],
obs: List[List[torch.Tensor]],
actions: List[AgentAction],
init_value_mem: torch.Tensor,
init_baseline_mem: torch.Tensor,
) -> Tuple[
Dict[str, torch.Tensor],
Dict[str, torch.Tensor],
AgentBufferField,
AgentBufferField,
torch.Tensor,
torch.Tensor,
]:
"""
Evaluate a trajectory sequence-by-sequence, assembling the result. This enables us to get the
intermediate memories for the critic.
:param tensor_obs: A List of tensors of shape (trajectory_len, <obs_dim>) that are the agent's
observations for this trajectory.
:param initial_memory: The memory that preceeds this trajectory. Of shape (1,1,<mem_size>), i.e.
what is returned as the output of a MemoryModules.
:return: A Tuple of the value estimates as a Dict of [name, tensor], an AgentBufferField of the initial
memories to be used during value function update, and the final memory at the end of the trajectory.
"""
num_experiences = self_obs[0].shape[0]
all_next_value_mem = AgentBufferField()
all_next_baseline_mem = AgentBufferField()
# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes,
# that division isn't even, and we must pad the leftover sequence.
# In the buffer, the last sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the last sequence is [obs,pad,pad].
# Compute the number of elements in this padded seq.
leftover_seq_len = num_experiences % self.policy.sequence_length
all_values: Dict[str, List[np.ndarray]] = defaultdict(list)
all_baseline: Dict[str, List[np.ndarray]] = defaultdict(list)
_baseline_mem = init_baseline_mem
_value_mem = init_value_mem
# Evaluate other trajectories, carrying over _mem after each
# trajectory
for seq_num in range(num_experiences // self.policy.sequence_length):
for _ in range(self.policy.sequence_length):
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(_baseline_mem.squeeze())
)
start = seq_num * self.policy.sequence_length
end = (seq_num + 1) * self.policy.sequence_length
self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
seq_obs.append(_self_obs[start:end])
self_seq_obs.append(seq_obs)
for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for _obs in groupmate_obs:
sliced_seq_obs = _obs[start:end]
seq_obs.append(sliced_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = groupmate_action.slice(start, end)
groupmate_seq_act.append(_act)
all_seq_obs = self_seq_obs + groupmate_seq_obs
values, _value_mem = self.critic.critic_pass(
all_seq_obs, _value_mem, sequence_length=self.policy.sequence_length
)
for signal_name, _val in values.items():
all_values[signal_name].append(_val)
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
baselines, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
_baseline_mem,
sequence_length=self.policy.sequence_length,
)
for signal_name, _val in baselines.items():
all_baseline[signal_name].append(_val)
# Compute values for the potentially truncated initial sequence
if leftover_seq_len > 0:
self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
last_seq_obs = _self_obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
self_seq_obs.append(seq_obs)
for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for _obs in groupmate_obs:
last_seq_obs = _obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = groupmate_action.slice(len(_obs) - leftover_seq_len, len(_obs))
groupmate_seq_act.append(_act)
# For the last sequence, the initial memory should be the one at the
# beginning of this trajectory.
seq_obs = []
for _ in range(leftover_seq_len):
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(_baseline_mem.squeeze())
)
all_seq_obs = self_seq_obs + groupmate_seq_obs
last_values, _value_mem = self.critic.critic_pass(
all_seq_obs, _value_mem, sequence_length=leftover_seq_len
)
for signal_name, _val in last_values.items():
all_values[signal_name].append(_val)
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
last_baseline, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
_baseline_mem,
sequence_length=leftover_seq_len,
)
for signal_name, _val in last_baseline.items():
all_baseline[signal_name].append(_val)
# Create one tensor per reward signal
all_value_tensors = {
signal_name: torch.cat(value_list, dim=0)
for signal_name, value_list in all_values.items()
}
all_baseline_tensors = {
signal_name: torch.cat(baseline_list, dim=0)
for signal_name, baseline_list in all_baseline.items()
}
next_value_mem = _value_mem
next_baseline_mem = _baseline_mem
return (
all_value_tensors,
all_baseline_tensors,
all_next_value_mem,
all_next_baseline_mem,
next_value_mem,
next_baseline_mem,
)
def get_trajectory_value_estimates(
self,
batch: AgentBuffer,
next_obs: List[np.ndarray],
done: bool,
agent_id: str = "",
) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]:
"""
Override base class method. Unused in the trainer, but needed to make sure class heirarchy is maintained.
Assume that there are no group obs.
"""
(
value_estimates,
_,
next_value_estimates,
all_next_value_mem,
_,
) = self.get_trajectory_and_baseline_value_estimates(
batch, next_obs, [], done, agent_id
)
return value_estimates, next_value_estimates, all_next_value_mem
def get_trajectory_and_baseline_value_estimates(
self,
batch: AgentBuffer,
next_obs: List[np.ndarray],
next_groupmate_obs: List[List[np.ndarray]],
done: bool,
agent_id: str = "",
) -> Tuple[
Dict[str, np.ndarray],
Dict[str, np.ndarray],
Dict[str, float],
Optional[AgentBufferField],
Optional[AgentBufferField],
]:
"""
Get value estimates, baseline estimates, and memories for a trajectory, in batch form.
:param batch: An AgentBuffer that consists of a trajectory.
:param next_obs: the next observation (after the trajectory). Used for boostrapping
if this is not a termiinal trajectory.
:param next_groupmate_obs: the next observations from other members of the group.
:param done: Set true if this is a terminal trajectory.
:param agent_id: Agent ID of the agent that this trajectory belongs to.
:returns: A Tuple of the Value Estimates as a Dict of [name, np.ndarray(trajectory_len)],
the baseline estimates as a Dict, the final value estimate as a Dict of [name, float], and
optionally (if using memories) an AgentBufferField of initial critic and baseline memories to be used
during update.
"""
n_obs = len(self.policy.behavior_spec.observation_specs)
current_obs = ObsUtil.from_buffer(batch, n_obs)
groupmate_obs = GroupObsUtil.from_buffer(batch, n_obs)
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
groupmate_obs = [
[ModelUtils.list_to_tensor(obs) for obs in _groupmate_obs]
for _groupmate_obs in groupmate_obs
]
groupmate_actions = AgentAction.group_from_buffer(batch)
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]
next_obs = [obs.unsqueeze(0) for obs in next_obs]
next_groupmate_obs = [
ModelUtils.list_to_tensor_list(_list_obs)
for _list_obs in next_groupmate_obs
]
# Expand dimensions of next critic obs
next_groupmate_obs = [
[_obs.unsqueeze(0) for _obs in _list_obs]
for _list_obs in next_groupmate_obs
]
if agent_id in self.value_memory_dict:
# The agent_id should always be in both since they are added together
_init_value_mem = self.value_memory_dict[agent_id]
_init_baseline_mem = self.baseline_memory_dict[agent_id]
else:
_init_value_mem = (
torch.zeros((1, 1, self.critic.memory_size))
if self.policy.use_recurrent
else None
)
_init_baseline_mem = (
torch.zeros((1, 1, self.critic.memory_size))
if self.policy.use_recurrent
else None
)
all_obs = (
[current_obs] + groupmate_obs
if groupmate_obs is not None
else [current_obs]
)
all_next_value_mem: Optional[AgentBufferField] = None
all_next_baseline_mem: Optional[AgentBufferField] = None
with torch.no_grad():
if self.policy.use_recurrent:
(
value_estimates,
baseline_estimates,
all_next_value_mem,
all_next_baseline_mem,
next_value_mem,
next_baseline_mem,
) = self._evaluate_by_sequence_team(
current_obs,
groupmate_obs,
groupmate_actions,
_init_value_mem,
_init_baseline_mem,
)
else:
value_estimates, next_value_mem = self.critic.critic_pass(
all_obs, _init_value_mem, sequence_length=batch.num_experiences
)
groupmate_obs_and_actions = (groupmate_obs, groupmate_actions)
baseline_estimates, next_baseline_mem = self.critic.baseline(
current_obs,
groupmate_obs_and_actions,
_init_baseline_mem,
sequence_length=batch.num_experiences,
)
# Store the memory for the next trajectory
self.value_memory_dict[agent_id] = next_value_mem
self.baseline_memory_dict[agent_id] = next_baseline_mem
all_next_obs = (
[next_obs] + next_groupmate_obs
if next_groupmate_obs is not None
else [next_obs]
)
next_value_estimates, _ = self.critic.critic_pass(
all_next_obs, next_value_mem, sequence_length=1
)
for name, estimate in baseline_estimates.items():
baseline_estimates[name] = ModelUtils.to_numpy(estimate)
for name, estimate in value_estimates.items():
value_estimates[name] = ModelUtils.to_numpy(estimate)
# the base line and V shpuld not be on the same done flag
for name, estimate in next_value_estimates.items():
next_value_estimates[name] = ModelUtils.to_numpy(estimate)
if done:
for k in next_value_estimates:
if not self.reward_signals[k].ignore_done:
next_value_estimates[k][-1] = 0.0
return (
value_estimates,
baseline_estimates,
next_value_estimates,
all_next_value_mem,
all_next_baseline_mem,
)