Spaces:
Running
Running
# # Unity ML-Agents Toolkit | |
# ## ML-Agents Learning (POCA) | |
# Contains an implementation of MA-POCA. | |
from collections import defaultdict | |
from typing import cast, Dict, Union, Any, Type | |
import numpy as np | |
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod | |
from mlagents_envs.logging_util import get_logger | |
from mlagents_envs.base_env import BehaviorSpec | |
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil | |
from mlagents.trainers.trainer.on_policy_trainer import OnPolicyTrainer | |
from mlagents.trainers.trainer.trainer_utils import lambda_return | |
from mlagents.trainers.policy import Policy | |
from mlagents.trainers.policy.torch_policy import TorchPolicy | |
from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer, POCASettings | |
from mlagents.trainers.trajectory import Trajectory | |
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers | |
from mlagents.trainers.settings import TrainerSettings | |
from mlagents.trainers.torch_entities.networks import SimpleActor, SharedActorCritic | |
logger = get_logger(__name__) | |
TRAINER_NAME = "poca" | |
class POCATrainer(OnPolicyTrainer): | |
"""The POCATrainer is an implementation of the MA-POCA algorithm.""" | |
def __init__( | |
self, | |
behavior_name: str, | |
reward_buff_cap: int, | |
trainer_settings: TrainerSettings, | |
training: bool, | |
load: bool, | |
seed: int, | |
artifact_path: str, | |
): | |
""" | |
Responsible for collecting experiences and training POCA model. | |
:param behavior_name: The name of the behavior associated with trainer config | |
:param reward_buff_cap: Max reward history to track in the reward buffer | |
:param trainer_settings: The parameters for the trainer. | |
:param training: Whether the trainer is set for training. | |
:param load: Whether the model should be loaded. | |
:param seed: The seed the model will be initialized with | |
:param artifact_path: The directory within which to store artifacts from this trainer. | |
""" | |
super().__init__( | |
behavior_name, | |
reward_buff_cap, | |
trainer_settings, | |
training, | |
load, | |
seed, | |
artifact_path, | |
) | |
self.hyperparameters: POCASettings = cast( | |
POCASettings, self.trainer_settings.hyperparameters | |
) | |
self.seed = seed | |
self.policy: TorchPolicy = None # type: ignore | |
self.optimizer: TorchPOCAOptimizer = None # type: ignore | |
self.collected_group_rewards: Dict[str, int] = defaultdict(lambda: 0) | |
def _process_trajectory(self, trajectory: Trajectory) -> None: | |
""" | |
Takes a trajectory and processes it, putting it into the update buffer. | |
Processing involves calculating value and advantage targets for model updating step. | |
:param trajectory: The Trajectory tuple containing the steps to be processed. | |
""" | |
super()._process_trajectory(trajectory) | |
agent_id = trajectory.agent_id # All the agents should have the same ID | |
agent_buffer_trajectory = trajectory.to_agentbuffer() | |
# Update the normalization | |
if self.is_training: | |
self.policy.actor.update_normalization(agent_buffer_trajectory) | |
self.optimizer.critic.update_normalization(agent_buffer_trajectory) | |
# Get all value estimates | |
( | |
value_estimates, | |
baseline_estimates, | |
value_next, | |
value_memories, | |
baseline_memories, | |
) = self.optimizer.get_trajectory_and_baseline_value_estimates( | |
agent_buffer_trajectory, | |
trajectory.next_obs, | |
trajectory.next_group_obs, | |
trajectory.all_group_dones_reached | |
and trajectory.done_reached | |
and not trajectory.interrupted, | |
) | |
if value_memories is not None and baseline_memories is not None: | |
agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) | |
agent_buffer_trajectory[BufferKey.BASELINE_MEMORY].set(baseline_memories) | |
for name, v in value_estimates.items(): | |
agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend( | |
v | |
) | |
agent_buffer_trajectory[ | |
RewardSignalUtil.baseline_estimates_key(name) | |
].extend(baseline_estimates[name]) | |
self._stats_reporter.add_stat( | |
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Baseline Estimate", | |
np.mean(baseline_estimates[name]), | |
) | |
self._stats_reporter.add_stat( | |
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate", | |
np.mean(value_estimates[name]), | |
) | |
self.collected_rewards["environment"][agent_id] += np.sum( | |
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] | |
) | |
self.collected_group_rewards[agent_id] += np.sum( | |
agent_buffer_trajectory[BufferKey.GROUP_REWARD] | |
) | |
for name, reward_signal in self.optimizer.reward_signals.items(): | |
evaluate_result = ( | |
reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength | |
) | |
agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend( | |
evaluate_result | |
) | |
# Report the reward signals | |
self.collected_rewards[name][agent_id] += np.sum(evaluate_result) | |
# Compute lambda returns and advantage | |
tmp_advantages = [] | |
for name in self.optimizer.reward_signals: | |
local_rewards = np.array( | |
agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].get_batch(), | |
dtype=np.float32, | |
) | |
baseline_estimate = agent_buffer_trajectory[ | |
RewardSignalUtil.baseline_estimates_key(name) | |
].get_batch() | |
v_estimates = agent_buffer_trajectory[ | |
RewardSignalUtil.value_estimates_key(name) | |
].get_batch() | |
lambd_returns = lambda_return( | |
r=local_rewards, | |
value_estimates=v_estimates, | |
gamma=self.optimizer.reward_signals[name].gamma, | |
lambd=self.hyperparameters.lambd, | |
value_next=value_next[name], | |
) | |
local_advantage = np.array(lambd_returns) - np.array(baseline_estimate) | |
agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set( | |
lambd_returns | |
) | |
agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set( | |
local_advantage | |
) | |
tmp_advantages.append(local_advantage) | |
# Get global advantages | |
global_advantages = list( | |
np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0) | |
) | |
agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages) | |
self._append_to_update_buffer(agent_buffer_trajectory) | |
# If this was a terminal trajectory, append stats and reset reward collection | |
if trajectory.done_reached: | |
self._update_end_episode_stats(agent_id, self.optimizer) | |
# Remove dead agents from group reward recording | |
if not trajectory.all_group_dones_reached: | |
self.collected_group_rewards.pop(agent_id) | |
# If the whole team is done, average the remaining group rewards. | |
if trajectory.all_group_dones_reached and trajectory.done_reached: | |
self.stats_reporter.add_stat( | |
"Environment/Group Cumulative Reward", | |
self.collected_group_rewards.get(agent_id, 0), | |
aggregation=StatsAggregationMethod.HISTOGRAM, | |
) | |
self.collected_group_rewards.pop(agent_id) | |
def _is_ready_update(self): | |
""" | |
Returns whether or not the trainer has enough elements to run update model | |
:return: A boolean corresponding to whether or not update_model() can be run | |
""" | |
size_of_buffer = self.update_buffer.num_experiences | |
return size_of_buffer > self.hyperparameters.buffer_size | |
def end_episode(self) -> None: | |
""" | |
A signal that the Episode has ended. The buffer must be reset. | |
Get only called when the academy resets. For POCA, we should | |
also zero out the group rewards. | |
""" | |
super().end_episode() | |
self.collected_group_rewards.clear() | |
def create_policy( | |
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec | |
) -> TorchPolicy: | |
""" | |
Creates a policy with a PyTorch backend and POCA hyperparameters | |
:param parsed_behavior_id: | |
:param behavior_spec: specifications for policy construction | |
:return policy | |
""" | |
actor_cls: Union[Type[SimpleActor], Type[SharedActorCritic]] = SimpleActor | |
actor_kwargs: Dict[str, Any] = { | |
"conditional_sigma": False, | |
"tanh_squash": False, | |
} | |
policy = TorchPolicy( | |
self.seed, | |
behavior_spec, | |
self.trainer_settings.network_settings, | |
actor_cls, | |
actor_kwargs, | |
) | |
return policy | |
def create_optimizer(self) -> TorchPOCAOptimizer: | |
return TorchPOCAOptimizer(self.policy, self.trainer_settings) | |
def get_policy(self, name_behavior_id: str) -> Policy: | |
""" | |
Gets policy from trainer associated with name_behavior_id | |
:param name_behavior_id: full identifier of policy | |
""" | |
return self.policy | |
def get_trainer_name() -> str: | |
return TRAINER_NAME | |