Spaces:
Running
Running
# # Unity ML-Agents Toolkit | |
# ## ML-Agent Learning (PPO) | |
# Contains an implementation of PPO as described in: https://arxiv.org/abs/1707.06347 | |
from typing import cast, Type, Union, Dict, Any | |
import numpy as np | |
from mlagents_envs.base_env import BehaviorSpec | |
from mlagents_envs.logging_util import get_logger | |
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil | |
from mlagents.trainers.trainer.on_policy_trainer import OnPolicyTrainer | |
from mlagents.trainers.policy.policy import Policy | |
from mlagents.trainers.trainer.trainer_utils import get_gae | |
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer | |
from mlagents.trainers.policy.torch_policy import TorchPolicy | |
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer, PPOSettings | |
from mlagents.trainers.trajectory import Trajectory | |
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers | |
from mlagents.trainers.settings import TrainerSettings | |
from mlagents.trainers.torch_entities.networks import SimpleActor, SharedActorCritic | |
logger = get_logger(__name__) | |
TRAINER_NAME = "ppo" | |
class PPOTrainer(OnPolicyTrainer): | |
"""The PPOTrainer is an implementation of the PPO algorithm.""" | |
def __init__( | |
self, | |
behavior_name: str, | |
reward_buff_cap: int, | |
trainer_settings: TrainerSettings, | |
training: bool, | |
load: bool, | |
seed: int, | |
artifact_path: str, | |
): | |
""" | |
Responsible for collecting experiences and training PPO model. | |
:param behavior_name: The name of the behavior associated with trainer config | |
:param reward_buff_cap: Max reward history to track in the reward buffer | |
:param trainer_settings: The parameters for the trainer. | |
:param training: Whether the trainer is set for training. | |
:param load: Whether the model should be loaded. | |
:param seed: The seed the model will be initialized with | |
:param artifact_path: The directory within which to store artifacts from this trainer. | |
""" | |
super().__init__( | |
behavior_name, | |
reward_buff_cap, | |
trainer_settings, | |
training, | |
load, | |
seed, | |
artifact_path, | |
) | |
self.hyperparameters: PPOSettings = cast( | |
PPOSettings, self.trainer_settings.hyperparameters | |
) | |
self.seed = seed | |
self.shared_critic = self.hyperparameters.shared_critic | |
self.policy: TorchPolicy = None # type: ignore | |
def _process_trajectory(self, trajectory: Trajectory) -> None: | |
""" | |
Takes a trajectory and processes it, putting it into the update buffer. | |
Processing involves calculating value and advantage targets for model updating step. | |
:param trajectory: The Trajectory tuple containing the steps to be processed. | |
""" | |
super()._process_trajectory(trajectory) | |
agent_id = trajectory.agent_id # All the agents should have the same ID | |
agent_buffer_trajectory = trajectory.to_agentbuffer() | |
# Check if we used group rewards, warn if so. | |
self._warn_if_group_reward(agent_buffer_trajectory) | |
# Update the normalization | |
if self.is_training: | |
self.policy.actor.update_normalization(agent_buffer_trajectory) | |
self.optimizer.critic.update_normalization(agent_buffer_trajectory) | |
# Get all value estimates | |
( | |
value_estimates, | |
value_next, | |
value_memories, | |
) = self.optimizer.get_trajectory_value_estimates( | |
agent_buffer_trajectory, | |
trajectory.next_obs, | |
trajectory.done_reached and not trajectory.interrupted, | |
) | |
if value_memories is not None: | |
agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) | |
for name, v in value_estimates.items(): | |
agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend( | |
v | |
) | |
self._stats_reporter.add_stat( | |
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate", | |
np.mean(v), | |
) | |
# Evaluate all reward functions | |
self.collected_rewards["environment"][agent_id] += np.sum( | |
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] | |
) | |
for name, reward_signal in self.optimizer.reward_signals.items(): | |
evaluate_result = ( | |
reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength | |
) | |
agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend( | |
evaluate_result | |
) | |
# Report the reward signals | |
self.collected_rewards[name][agent_id] += np.sum(evaluate_result) | |
# Compute GAE and returns | |
tmp_advantages = [] | |
tmp_returns = [] | |
for name in self.optimizer.reward_signals: | |
bootstrap_value = value_next[name] | |
local_rewards = agent_buffer_trajectory[ | |
RewardSignalUtil.rewards_key(name) | |
].get_batch() | |
local_value_estimates = agent_buffer_trajectory[ | |
RewardSignalUtil.value_estimates_key(name) | |
].get_batch() | |
local_advantage = get_gae( | |
rewards=local_rewards, | |
value_estimates=local_value_estimates, | |
value_next=bootstrap_value, | |
gamma=self.optimizer.reward_signals[name].gamma, | |
lambd=self.hyperparameters.lambd, | |
) | |
local_return = local_advantage + local_value_estimates | |
# This is later use as target for the different value estimates | |
agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set( | |
local_return | |
) | |
agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set( | |
local_advantage | |
) | |
tmp_advantages.append(local_advantage) | |
tmp_returns.append(local_return) | |
# Get global advantages | |
global_advantages = list( | |
np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0) | |
) | |
global_returns = list(np.mean(np.array(tmp_returns, dtype=np.float32), axis=0)) | |
agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages) | |
agent_buffer_trajectory[BufferKey.DISCOUNTED_RETURNS].set(global_returns) | |
self._append_to_update_buffer(agent_buffer_trajectory) | |
# If this was a terminal trajectory, append stats and reset reward collection | |
if trajectory.done_reached: | |
self._update_end_episode_stats(agent_id, self.optimizer) | |
def create_optimizer(self) -> TorchOptimizer: | |
return TorchPPOOptimizer( # type: ignore | |
cast(TorchPolicy, self.policy), self.trainer_settings # type: ignore | |
) # type: ignore | |
def create_policy( | |
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec | |
) -> TorchPolicy: | |
""" | |
Creates a policy with a PyTorch backend and PPO hyperparameters | |
:param parsed_behavior_id: | |
:param behavior_spec: specifications for policy construction | |
:return policy | |
""" | |
actor_cls: Union[Type[SimpleActor], Type[SharedActorCritic]] = SimpleActor | |
actor_kwargs: Dict[str, Any] = { | |
"conditional_sigma": False, | |
"tanh_squash": False, | |
} | |
if self.shared_critic: | |
reward_signal_configs = self.trainer_settings.reward_signals | |
reward_signal_names = [ | |
key.value for key, _ in reward_signal_configs.items() | |
] | |
actor_cls = SharedActorCritic | |
actor_kwargs.update({"stream_names": reward_signal_names}) | |
policy = TorchPolicy( | |
self.seed, | |
behavior_spec, | |
self.trainer_settings.network_settings, | |
actor_cls, | |
actor_kwargs, | |
) | |
return policy | |
def get_policy(self, name_behavior_id: str) -> Policy: | |
""" | |
Gets policy from trainer associated with name_behavior_id | |
:param name_behavior_id: full identifier of policy | |
""" | |
return self.policy | |
def get_trainer_name() -> str: | |
return TRAINER_NAME | |