Spaces:
Running
Running
"""Tests for the array padding functions. | |
""" | |
import pytest | |
import numpy as np | |
from numpy.testing import assert_array_equal, assert_allclose, assert_equal | |
from numpy.lib.arraypad import _as_pairs | |
_numeric_dtypes = ( | |
np.sctypes["uint"] | |
+ np.sctypes["int"] | |
+ np.sctypes["float"] | |
+ np.sctypes["complex"] | |
) | |
_all_modes = { | |
'constant': {'constant_values': 0}, | |
'edge': {}, | |
'linear_ramp': {'end_values': 0}, | |
'maximum': {'stat_length': None}, | |
'mean': {'stat_length': None}, | |
'median': {'stat_length': None}, | |
'minimum': {'stat_length': None}, | |
'reflect': {'reflect_type': 'even'}, | |
'symmetric': {'reflect_type': 'even'}, | |
'wrap': {}, | |
'empty': {} | |
} | |
class TestAsPairs: | |
def test_single_value(self): | |
"""Test casting for a single value.""" | |
expected = np.array([[3, 3]] * 10) | |
for x in (3, [3], [[3]]): | |
result = _as_pairs(x, 10) | |
assert_equal(result, expected) | |
# Test with dtype=object | |
obj = object() | |
assert_equal( | |
_as_pairs(obj, 10), | |
np.array([[obj, obj]] * 10) | |
) | |
def test_two_values(self): | |
"""Test proper casting for two different values.""" | |
# Broadcasting in the first dimension with numbers | |
expected = np.array([[3, 4]] * 10) | |
for x in ([3, 4], [[3, 4]]): | |
result = _as_pairs(x, 10) | |
assert_equal(result, expected) | |
# and with dtype=object | |
obj = object() | |
assert_equal( | |
_as_pairs(["a", obj], 10), | |
np.array([["a", obj]] * 10) | |
) | |
# Broadcasting in the second / last dimension with numbers | |
assert_equal( | |
_as_pairs([[3], [4]], 2), | |
np.array([[3, 3], [4, 4]]) | |
) | |
# and with dtype=object | |
assert_equal( | |
_as_pairs([["a"], [obj]], 2), | |
np.array([["a", "a"], [obj, obj]]) | |
) | |
def test_with_none(self): | |
expected = ((None, None), (None, None), (None, None)) | |
assert_equal( | |
_as_pairs(None, 3, as_index=False), | |
expected | |
) | |
assert_equal( | |
_as_pairs(None, 3, as_index=True), | |
expected | |
) | |
def test_pass_through(self): | |
"""Test if `x` already matching desired output are passed through.""" | |
expected = np.arange(12).reshape((6, 2)) | |
assert_equal( | |
_as_pairs(expected, 6), | |
expected | |
) | |
def test_as_index(self): | |
"""Test results if `as_index=True`.""" | |
assert_equal( | |
_as_pairs([2.6, 3.3], 10, as_index=True), | |
np.array([[3, 3]] * 10, dtype=np.intp) | |
) | |
assert_equal( | |
_as_pairs([2.6, 4.49], 10, as_index=True), | |
np.array([[3, 4]] * 10, dtype=np.intp) | |
) | |
for x in (-3, [-3], [[-3]], [-3, 4], [3, -4], [[-3, 4]], [[4, -3]], | |
[[1, 2]] * 9 + [[1, -2]]): | |
with pytest.raises(ValueError, match="negative values"): | |
_as_pairs(x, 10, as_index=True) | |
def test_exceptions(self): | |
"""Ensure faulty usage is discovered.""" | |
with pytest.raises(ValueError, match="more dimensions than allowed"): | |
_as_pairs([[[3]]], 10) | |
with pytest.raises(ValueError, match="could not be broadcast"): | |
_as_pairs([[1, 2], [3, 4]], 3) | |
with pytest.raises(ValueError, match="could not be broadcast"): | |
_as_pairs(np.ones((2, 3)), 3) | |
class TestConditionalShortcuts: | |
def test_zero_padding_shortcuts(self, mode): | |
test = np.arange(120).reshape(4, 5, 6) | |
pad_amt = [(0, 0) for _ in test.shape] | |
assert_array_equal(test, np.pad(test, pad_amt, mode=mode)) | |
def test_shallow_statistic_range(self, mode): | |
test = np.arange(120).reshape(4, 5, 6) | |
pad_amt = [(1, 1) for _ in test.shape] | |
assert_array_equal(np.pad(test, pad_amt, mode='edge'), | |
np.pad(test, pad_amt, mode=mode, stat_length=1)) | |
def test_clip_statistic_range(self, mode): | |
test = np.arange(30).reshape(5, 6) | |
pad_amt = [(3, 3) for _ in test.shape] | |
assert_array_equal(np.pad(test, pad_amt, mode=mode), | |
np.pad(test, pad_amt, mode=mode, stat_length=30)) | |
class TestStatistic: | |
def test_check_mean_stat_length(self): | |
a = np.arange(100).astype('f') | |
a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), )) | |
b = np.array( | |
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, | |
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, | |
0.5, 0.5, 0.5, 0.5, 0.5, | |
0., 1., 2., 3., 4., 5., 6., 7., 8., 9., | |
10., 11., 12., 13., 14., 15., 16., 17., 18., 19., | |
20., 21., 22., 23., 24., 25., 26., 27., 28., 29., | |
30., 31., 32., 33., 34., 35., 36., 37., 38., 39., | |
40., 41., 42., 43., 44., 45., 46., 47., 48., 49., | |
50., 51., 52., 53., 54., 55., 56., 57., 58., 59., | |
60., 61., 62., 63., 64., 65., 66., 67., 68., 69., | |
70., 71., 72., 73., 74., 75., 76., 77., 78., 79., | |
80., 81., 82., 83., 84., 85., 86., 87., 88., 89., | |
90., 91., 92., 93., 94., 95., 96., 97., 98., 99., | |
98., 98., 98., 98., 98., 98., 98., 98., 98., 98., | |
98., 98., 98., 98., 98., 98., 98., 98., 98., 98. | |
]) | |
assert_array_equal(a, b) | |
def test_check_maximum_1(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'maximum') | |
b = np.array( | |
[99, 99, 99, 99, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
99, 99, 99, 99, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, 99, 99, 99, 99, 99] | |
) | |
assert_array_equal(a, b) | |
def test_check_maximum_2(self): | |
a = np.arange(100) + 1 | |
a = np.pad(a, (25, 20), 'maximum') | |
b = np.array( | |
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | |
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | |
100, 100, 100, 100, 100, | |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, | |
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, | |
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, | |
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, | |
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, | |
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, | |
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, | |
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, | |
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, | |
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, | |
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | |
100, 100, 100, 100, 100, 100, 100, 100, 100, 100] | |
) | |
assert_array_equal(a, b) | |
def test_check_maximum_stat_length(self): | |
a = np.arange(100) + 1 | |
a = np.pad(a, (25, 20), 'maximum', stat_length=10) | |
b = np.array( | |
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | |
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | |
10, 10, 10, 10, 10, | |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, | |
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, | |
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, | |
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, | |
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, | |
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, | |
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, | |
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, | |
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, | |
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, | |
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | |
100, 100, 100, 100, 100, 100, 100, 100, 100, 100] | |
) | |
assert_array_equal(a, b) | |
def test_check_minimum_1(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'minimum') | |
b = np.array( | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
) | |
assert_array_equal(a, b) | |
def test_check_minimum_2(self): | |
a = np.arange(100) + 2 | |
a = np.pad(a, (25, 20), 'minimum') | |
b = np.array( | |
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, 2, | |
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, | |
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, | |
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, | |
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, | |
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, | |
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, | |
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, | |
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, | |
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, | |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2] | |
) | |
assert_array_equal(a, b) | |
def test_check_minimum_stat_length(self): | |
a = np.arange(100) + 1 | |
a = np.pad(a, (25, 20), 'minimum', stat_length=10) | |
b = np.array( | |
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, | |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, | |
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, | |
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, | |
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, | |
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, | |
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, | |
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, | |
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, | |
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, | |
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, | |
91, 91, 91, 91, 91, 91, 91, 91, 91, 91, | |
91, 91, 91, 91, 91, 91, 91, 91, 91, 91] | |
) | |
assert_array_equal(a, b) | |
def test_check_median(self): | |
a = np.arange(100).astype('f') | |
a = np.pad(a, (25, 20), 'median') | |
b = np.array( | |
[49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, | |
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, | |
49.5, 49.5, 49.5, 49.5, 49.5, | |
0., 1., 2., 3., 4., 5., 6., 7., 8., 9., | |
10., 11., 12., 13., 14., 15., 16., 17., 18., 19., | |
20., 21., 22., 23., 24., 25., 26., 27., 28., 29., | |
30., 31., 32., 33., 34., 35., 36., 37., 38., 39., | |
40., 41., 42., 43., 44., 45., 46., 47., 48., 49., | |
50., 51., 52., 53., 54., 55., 56., 57., 58., 59., | |
60., 61., 62., 63., 64., 65., 66., 67., 68., 69., | |
70., 71., 72., 73., 74., 75., 76., 77., 78., 79., | |
80., 81., 82., 83., 84., 85., 86., 87., 88., 89., | |
90., 91., 92., 93., 94., 95., 96., 97., 98., 99., | |
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, | |
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] | |
) | |
assert_array_equal(a, b) | |
def test_check_median_01(self): | |
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) | |
a = np.pad(a, 1, 'median') | |
b = np.array( | |
[[4, 4, 5, 4, 4], | |
[3, 3, 1, 4, 3], | |
[5, 4, 5, 9, 5], | |
[8, 9, 8, 2, 8], | |
[4, 4, 5, 4, 4]] | |
) | |
assert_array_equal(a, b) | |
def test_check_median_02(self): | |
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) | |
a = np.pad(a.T, 1, 'median').T | |
b = np.array( | |
[[5, 4, 5, 4, 5], | |
[3, 3, 1, 4, 3], | |
[5, 4, 5, 9, 5], | |
[8, 9, 8, 2, 8], | |
[5, 4, 5, 4, 5]] | |
) | |
assert_array_equal(a, b) | |
def test_check_median_stat_length(self): | |
a = np.arange(100).astype('f') | |
a[1] = 2. | |
a[97] = 96. | |
a = np.pad(a, (25, 20), 'median', stat_length=(3, 5)) | |
b = np.array( | |
[ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., | |
2., 2., 2., 2., 2., 2., 2., 2., 2., 2., | |
2., 2., 2., 2., 2., | |
0., 2., 2., 3., 4., 5., 6., 7., 8., 9., | |
10., 11., 12., 13., 14., 15., 16., 17., 18., 19., | |
20., 21., 22., 23., 24., 25., 26., 27., 28., 29., | |
30., 31., 32., 33., 34., 35., 36., 37., 38., 39., | |
40., 41., 42., 43., 44., 45., 46., 47., 48., 49., | |
50., 51., 52., 53., 54., 55., 56., 57., 58., 59., | |
60., 61., 62., 63., 64., 65., 66., 67., 68., 69., | |
70., 71., 72., 73., 74., 75., 76., 77., 78., 79., | |
80., 81., 82., 83., 84., 85., 86., 87., 88., 89., | |
90., 91., 92., 93., 94., 95., 96., 96., 98., 99., | |
96., 96., 96., 96., 96., 96., 96., 96., 96., 96., | |
96., 96., 96., 96., 96., 96., 96., 96., 96., 96.] | |
) | |
assert_array_equal(a, b) | |
def test_check_mean_shape_one(self): | |
a = [[4, 5, 6]] | |
a = np.pad(a, (5, 7), 'mean', stat_length=2) | |
b = np.array( | |
[[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], | |
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]] | |
) | |
assert_array_equal(a, b) | |
def test_check_mean_2(self): | |
a = np.arange(100).astype('f') | |
a = np.pad(a, (25, 20), 'mean') | |
b = np.array( | |
[49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, | |
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, | |
49.5, 49.5, 49.5, 49.5, 49.5, | |
0., 1., 2., 3., 4., 5., 6., 7., 8., 9., | |
10., 11., 12., 13., 14., 15., 16., 17., 18., 19., | |
20., 21., 22., 23., 24., 25., 26., 27., 28., 29., | |
30., 31., 32., 33., 34., 35., 36., 37., 38., 39., | |
40., 41., 42., 43., 44., 45., 46., 47., 48., 49., | |
50., 51., 52., 53., 54., 55., 56., 57., 58., 59., | |
60., 61., 62., 63., 64., 65., 66., 67., 68., 69., | |
70., 71., 72., 73., 74., 75., 76., 77., 78., 79., | |
80., 81., 82., 83., 84., 85., 86., 87., 88., 89., | |
90., 91., 92., 93., 94., 95., 96., 97., 98., 99., | |
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, | |
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] | |
) | |
assert_array_equal(a, b) | |
def test_same_prepend_append(self, mode): | |
""" Test that appended and prepended values are equal """ | |
# This test is constructed to trigger floating point rounding errors in | |
# a way that caused gh-11216 for mode=='mean' | |
a = np.array([-1, 2, -1]) + np.array([0, 1e-12, 0], dtype=np.float64) | |
a = np.pad(a, (1, 1), mode) | |
assert_equal(a[0], a[-1]) | |
def test_check_negative_stat_length(self, mode, stat_length): | |
arr = np.arange(30).reshape((6, 5)) | |
match = "index can't contain negative values" | |
with pytest.raises(ValueError, match=match): | |
np.pad(arr, 2, mode, stat_length=stat_length) | |
def test_simple_stat_length(self): | |
a = np.arange(30) | |
a = np.reshape(a, (6, 5)) | |
a = np.pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,)) | |
b = np.array( | |
[[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], | |
[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], | |
[1, 1, 1, 0, 1, 2, 3, 4, 3, 3], | |
[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], | |
[11, 11, 11, 10, 11, 12, 13, 14, 13, 13], | |
[16, 16, 16, 15, 16, 17, 18, 19, 18, 18], | |
[21, 21, 21, 20, 21, 22, 23, 24, 23, 23], | |
[26, 26, 26, 25, 26, 27, 28, 29, 28, 28], | |
[21, 21, 21, 20, 21, 22, 23, 24, 23, 23], | |
[21, 21, 21, 20, 21, 22, 23, 24, 23, 23], | |
[21, 21, 21, 20, 21, 22, 23, 24, 23, 23]] | |
) | |
assert_array_equal(a, b) | |
def test_zero_stat_length_valid(self, mode): | |
arr = np.pad([1., 2.], (1, 2), mode, stat_length=0) | |
expected = np.array([np.nan, 1., 2., np.nan, np.nan]) | |
assert_equal(arr, expected) | |
def test_zero_stat_length_invalid(self, mode): | |
match = "stat_length of 0 yields no value for padding" | |
with pytest.raises(ValueError, match=match): | |
np.pad([1., 2.], 0, mode, stat_length=0) | |
with pytest.raises(ValueError, match=match): | |
np.pad([1., 2.], 0, mode, stat_length=(1, 0)) | |
with pytest.raises(ValueError, match=match): | |
np.pad([1., 2.], 1, mode, stat_length=0) | |
with pytest.raises(ValueError, match=match): | |
np.pad([1., 2.], 1, mode, stat_length=(1, 0)) | |
class TestConstant: | |
def test_check_constant(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'constant', constant_values=(10, 20)) | |
b = np.array( | |
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | |
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | |
10, 10, 10, 10, 10, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, | |
20, 20, 20, 20, 20, 20, 20, 20, 20, 20] | |
) | |
assert_array_equal(a, b) | |
def test_check_constant_zeros(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'constant') | |
b = np.array( | |
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
) | |
assert_array_equal(a, b) | |
def test_check_constant_float(self): | |
# If input array is int, but constant_values are float, the dtype of | |
# the array to be padded is kept | |
arr = np.arange(30).reshape(5, 6) | |
test = np.pad(arr, (1, 2), mode='constant', | |
constant_values=1.1) | |
expected = np.array( | |
[[ 1, 1, 1, 1, 1, 1, 1, 1, 1], | |
[ 1, 0, 1, 2, 3, 4, 5, 1, 1], | |
[ 1, 6, 7, 8, 9, 10, 11, 1, 1], | |
[ 1, 12, 13, 14, 15, 16, 17, 1, 1], | |
[ 1, 18, 19, 20, 21, 22, 23, 1, 1], | |
[ 1, 24, 25, 26, 27, 28, 29, 1, 1], | |
[ 1, 1, 1, 1, 1, 1, 1, 1, 1], | |
[ 1, 1, 1, 1, 1, 1, 1, 1, 1]] | |
) | |
assert_allclose(test, expected) | |
def test_check_constant_float2(self): | |
# If input array is float, and constant_values are float, the dtype of | |
# the array to be padded is kept - here retaining the float constants | |
arr = np.arange(30).reshape(5, 6) | |
arr_float = arr.astype(np.float64) | |
test = np.pad(arr_float, ((1, 2), (1, 2)), mode='constant', | |
constant_values=1.1) | |
expected = np.array( | |
[[ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], | |
[ 1.1, 0. , 1. , 2. , 3. , 4. , 5. , 1.1, 1.1], | |
[ 1.1, 6. , 7. , 8. , 9. , 10. , 11. , 1.1, 1.1], | |
[ 1.1, 12. , 13. , 14. , 15. , 16. , 17. , 1.1, 1.1], | |
[ 1.1, 18. , 19. , 20. , 21. , 22. , 23. , 1.1, 1.1], | |
[ 1.1, 24. , 25. , 26. , 27. , 28. , 29. , 1.1, 1.1], | |
[ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], | |
[ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]] | |
) | |
assert_allclose(test, expected) | |
def test_check_constant_float3(self): | |
a = np.arange(100, dtype=float) | |
a = np.pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2)) | |
b = np.array( | |
[-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, | |
-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, | |
-1.1, -1.1, -1.1, -1.1, -1.1, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
-1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, | |
-1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2] | |
) | |
assert_allclose(a, b) | |
def test_check_constant_odd_pad_amount(self): | |
arr = np.arange(30).reshape(5, 6) | |
test = np.pad(arr, ((1,), (2,)), mode='constant', | |
constant_values=3) | |
expected = np.array( | |
[[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3], | |
[ 3, 3, 0, 1, 2, 3, 4, 5, 3, 3], | |
[ 3, 3, 6, 7, 8, 9, 10, 11, 3, 3], | |
[ 3, 3, 12, 13, 14, 15, 16, 17, 3, 3], | |
[ 3, 3, 18, 19, 20, 21, 22, 23, 3, 3], | |
[ 3, 3, 24, 25, 26, 27, 28, 29, 3, 3], | |
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]] | |
) | |
assert_allclose(test, expected) | |
def test_check_constant_pad_2d(self): | |
arr = np.arange(4).reshape(2, 2) | |
test = np.lib.pad(arr, ((1, 2), (1, 3)), mode='constant', | |
constant_values=((1, 2), (3, 4))) | |
expected = np.array( | |
[[3, 1, 1, 4, 4, 4], | |
[3, 0, 1, 4, 4, 4], | |
[3, 2, 3, 4, 4, 4], | |
[3, 2, 2, 4, 4, 4], | |
[3, 2, 2, 4, 4, 4]] | |
) | |
assert_allclose(test, expected) | |
def test_check_large_integers(self): | |
uint64_max = 2 ** 64 - 1 | |
arr = np.full(5, uint64_max, dtype=np.uint64) | |
test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) | |
expected = np.full(7, uint64_max, dtype=np.uint64) | |
assert_array_equal(test, expected) | |
int64_max = 2 ** 63 - 1 | |
arr = np.full(5, int64_max, dtype=np.int64) | |
test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) | |
expected = np.full(7, int64_max, dtype=np.int64) | |
assert_array_equal(test, expected) | |
def test_check_object_array(self): | |
arr = np.empty(1, dtype=object) | |
obj_a = object() | |
arr[0] = obj_a | |
obj_b = object() | |
obj_c = object() | |
arr = np.pad(arr, pad_width=1, mode='constant', | |
constant_values=(obj_b, obj_c)) | |
expected = np.empty((3,), dtype=object) | |
expected[0] = obj_b | |
expected[1] = obj_a | |
expected[2] = obj_c | |
assert_array_equal(arr, expected) | |
def test_pad_empty_dimension(self): | |
arr = np.zeros((3, 0, 2)) | |
result = np.pad(arr, [(0,), (2,), (1,)], mode="constant") | |
assert result.shape == (3, 4, 4) | |
class TestLinearRamp: | |
def test_check_simple(self): | |
a = np.arange(100).astype('f') | |
a = np.pad(a, (25, 20), 'linear_ramp', end_values=(4, 5)) | |
b = np.array( | |
[4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56, | |
2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96, | |
0.80, 0.64, 0.48, 0.32, 0.16, | |
0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, | |
10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, | |
20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, | |
30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, | |
40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, | |
50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, | |
60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, | |
70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, | |
80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, | |
90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, | |
94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0, | |
47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.] | |
) | |
assert_allclose(a, b, rtol=1e-5, atol=1e-5) | |
def test_check_2d(self): | |
arr = np.arange(20).reshape(4, 5).astype(np.float64) | |
test = np.pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0)) | |
expected = np.array( | |
[[0., 0., 0., 0., 0., 0., 0., 0., 0.], | |
[0., 0., 0., 0.5, 1., 1.5, 2., 1., 0.], | |
[0., 0., 0., 1., 2., 3., 4., 2., 0.], | |
[0., 2.5, 5., 6., 7., 8., 9., 4.5, 0.], | |
[0., 5., 10., 11., 12., 13., 14., 7., 0.], | |
[0., 7.5, 15., 16., 17., 18., 19., 9.5, 0.], | |
[0., 3.75, 7.5, 8., 8.5, 9., 9.5, 4.75, 0.], | |
[0., 0., 0., 0., 0., 0., 0., 0., 0.]]) | |
assert_allclose(test, expected) | |
def test_object_array(self): | |
from fractions import Fraction | |
arr = np.array([Fraction(1, 2), Fraction(-1, 2)]) | |
actual = np.pad(arr, (2, 3), mode='linear_ramp', end_values=0) | |
# deliberately chosen to have a non-power-of-2 denominator such that | |
# rounding to floats causes a failure. | |
expected = np.array([ | |
Fraction( 0, 12), | |
Fraction( 3, 12), | |
Fraction( 6, 12), | |
Fraction(-6, 12), | |
Fraction(-4, 12), | |
Fraction(-2, 12), | |
Fraction(-0, 12), | |
]) | |
assert_equal(actual, expected) | |
def test_end_values(self): | |
"""Ensure that end values are exact.""" | |
a = np.pad(np.ones(10).reshape(2, 5), (223, 123), mode="linear_ramp") | |
assert_equal(a[:, 0], 0.) | |
assert_equal(a[:, -1], 0.) | |
assert_equal(a[0, :], 0.) | |
assert_equal(a[-1, :], 0.) | |
def test_negative_difference(self, dtype): | |
""" | |
Check correct behavior of unsigned dtypes if there is a negative | |
difference between the edge to pad and `end_values`. Check both cases | |
to be independent of implementation. Test behavior for all other dtypes | |
in case dtype casting interferes with complex dtypes. See gh-14191. | |
""" | |
x = np.array([3], dtype=dtype) | |
result = np.pad(x, 3, mode="linear_ramp", end_values=0) | |
expected = np.array([0, 1, 2, 3, 2, 1, 0], dtype=dtype) | |
assert_equal(result, expected) | |
x = np.array([0], dtype=dtype) | |
result = np.pad(x, 3, mode="linear_ramp", end_values=3) | |
expected = np.array([3, 2, 1, 0, 1, 2, 3], dtype=dtype) | |
assert_equal(result, expected) | |
class TestReflect: | |
def test_check_simple(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'reflect') | |
b = np.array( | |
[25, 24, 23, 22, 21, 20, 19, 18, 17, 16, | |
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, | |
5, 4, 3, 2, 1, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
98, 97, 96, 95, 94, 93, 92, 91, 90, 89, | |
88, 87, 86, 85, 84, 83, 82, 81, 80, 79] | |
) | |
assert_array_equal(a, b) | |
def test_check_odd_method(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'reflect', reflect_type='odd') | |
b = np.array( | |
[-25, -24, -23, -22, -21, -20, -19, -18, -17, -16, | |
-15, -14, -13, -12, -11, -10, -9, -8, -7, -6, | |
-5, -4, -3, -2, -1, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, | |
110, 111, 112, 113, 114, 115, 116, 117, 118, 119] | |
) | |
assert_array_equal(a, b) | |
def test_check_large_pad(self): | |
a = [[4, 5, 6], [6, 7, 8]] | |
a = np.pad(a, (5, 7), 'reflect') | |
b = np.array( | |
[[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] | |
) | |
assert_array_equal(a, b) | |
def test_check_shape(self): | |
a = [[4, 5, 6]] | |
a = np.pad(a, (5, 7), 'reflect') | |
b = np.array( | |
[[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], | |
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] | |
) | |
assert_array_equal(a, b) | |
def test_check_01(self): | |
a = np.pad([1, 2, 3], 2, 'reflect') | |
b = np.array([3, 2, 1, 2, 3, 2, 1]) | |
assert_array_equal(a, b) | |
def test_check_02(self): | |
a = np.pad([1, 2, 3], 3, 'reflect') | |
b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2]) | |
assert_array_equal(a, b) | |
def test_check_03(self): | |
a = np.pad([1, 2, 3], 4, 'reflect') | |
b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3]) | |
assert_array_equal(a, b) | |
class TestEmptyArray: | |
"""Check how padding behaves on arrays with an empty dimension.""" | |
def test_pad_empty_dimension(self, mode): | |
match = ("can't extend empty axis 0 using modes other than 'constant' " | |
"or 'empty'") | |
with pytest.raises(ValueError, match=match): | |
np.pad([], 4, mode=mode) | |
with pytest.raises(ValueError, match=match): | |
np.pad(np.ndarray(0), 4, mode=mode) | |
with pytest.raises(ValueError, match=match): | |
np.pad(np.zeros((0, 3)), ((1,), (0,)), mode=mode) | |
def test_pad_non_empty_dimension(self, mode): | |
result = np.pad(np.ones((2, 0, 2)), ((3,), (0,), (1,)), mode=mode) | |
assert result.shape == (8, 0, 4) | |
class TestSymmetric: | |
def test_check_simple(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'symmetric') | |
b = np.array( | |
[24, 23, 22, 21, 20, 19, 18, 17, 16, 15, | |
14, 13, 12, 11, 10, 9, 8, 7, 6, 5, | |
4, 3, 2, 1, 0, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
99, 98, 97, 96, 95, 94, 93, 92, 91, 90, | |
89, 88, 87, 86, 85, 84, 83, 82, 81, 80] | |
) | |
assert_array_equal(a, b) | |
def test_check_odd_method(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'symmetric', reflect_type='odd') | |
b = np.array( | |
[-24, -23, -22, -21, -20, -19, -18, -17, -16, -15, | |
-14, -13, -12, -11, -10, -9, -8, -7, -6, -5, | |
-4, -3, -2, -1, 0, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, | |
109, 110, 111, 112, 113, 114, 115, 116, 117, 118] | |
) | |
assert_array_equal(a, b) | |
def test_check_large_pad(self): | |
a = [[4, 5, 6], [6, 7, 8]] | |
a = np.pad(a, (5, 7), 'symmetric') | |
b = np.array( | |
[[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], | |
[7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], | |
[7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], | |
[7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]] | |
) | |
assert_array_equal(a, b) | |
def test_check_large_pad_odd(self): | |
a = [[4, 5, 6], [6, 7, 8]] | |
a = np.pad(a, (5, 7), 'symmetric', reflect_type='odd') | |
b = np.array( | |
[[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6], | |
[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6], | |
[-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8], | |
[-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8], | |
[ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10], | |
[ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10], | |
[ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12], | |
[ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12], | |
[ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14], | |
[ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14], | |
[ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16], | |
[ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16], | |
[ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18], | |
[ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18]] | |
) | |
assert_array_equal(a, b) | |
def test_check_shape(self): | |
a = [[4, 5, 6]] | |
a = np.pad(a, (5, 7), 'symmetric') | |
b = np.array( | |
[[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], | |
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]] | |
) | |
assert_array_equal(a, b) | |
def test_check_01(self): | |
a = np.pad([1, 2, 3], 2, 'symmetric') | |
b = np.array([2, 1, 1, 2, 3, 3, 2]) | |
assert_array_equal(a, b) | |
def test_check_02(self): | |
a = np.pad([1, 2, 3], 3, 'symmetric') | |
b = np.array([3, 2, 1, 1, 2, 3, 3, 2, 1]) | |
assert_array_equal(a, b) | |
def test_check_03(self): | |
a = np.pad([1, 2, 3], 6, 'symmetric') | |
b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3]) | |
assert_array_equal(a, b) | |
class TestWrap: | |
def test_check_simple(self): | |
a = np.arange(100) | |
a = np.pad(a, (25, 20), 'wrap') | |
b = np.array( | |
[75, 76, 77, 78, 79, 80, 81, 82, 83, 84, | |
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, | |
95, 96, 97, 98, 99, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, | |
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, | |
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, | |
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | |
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, | |
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, | |
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, | |
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, | |
10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | |
) | |
assert_array_equal(a, b) | |
def test_check_large_pad(self): | |
a = np.arange(12) | |
a = np.reshape(a, (3, 4)) | |
a = np.pad(a, (10, 12), 'wrap') | |
b = np.array( | |
[[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11], | |
[2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, | |
3, 0, 1, 2, 3, 0, 1, 2, 3], | |
[6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, | |
7, 4, 5, 6, 7, 4, 5, 6, 7], | |
[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, | |
11, 8, 9, 10, 11, 8, 9, 10, 11]] | |
) | |
assert_array_equal(a, b) | |
def test_check_01(self): | |
a = np.pad([1, 2, 3], 3, 'wrap') | |
b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]) | |
assert_array_equal(a, b) | |
def test_check_02(self): | |
a = np.pad([1, 2, 3], 4, 'wrap') | |
b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1]) | |
assert_array_equal(a, b) | |
def test_pad_with_zero(self): | |
a = np.ones((3, 5)) | |
b = np.pad(a, (0, 5), mode="wrap") | |
assert_array_equal(a, b[:-5, :-5]) | |
def test_repeated_wrapping(self): | |
""" | |
Check wrapping on each side individually if the wrapped area is longer | |
than the original array. | |
""" | |
a = np.arange(5) | |
b = np.pad(a, (12, 0), mode="wrap") | |
assert_array_equal(np.r_[a, a, a, a][3:], b) | |
a = np.arange(5) | |
b = np.pad(a, (0, 12), mode="wrap") | |
assert_array_equal(np.r_[a, a, a, a][:-3], b) | |
class TestEdge: | |
def test_check_simple(self): | |
a = np.arange(12) | |
a = np.reshape(a, (4, 3)) | |
a = np.pad(a, ((2, 3), (3, 2)), 'edge') | |
b = np.array( | |
[[0, 0, 0, 0, 1, 2, 2, 2], | |
[0, 0, 0, 0, 1, 2, 2, 2], | |
[0, 0, 0, 0, 1, 2, 2, 2], | |
[3, 3, 3, 3, 4, 5, 5, 5], | |
[6, 6, 6, 6, 7, 8, 8, 8], | |
[9, 9, 9, 9, 10, 11, 11, 11], | |
[9, 9, 9, 9, 10, 11, 11, 11], | |
[9, 9, 9, 9, 10, 11, 11, 11], | |
[9, 9, 9, 9, 10, 11, 11, 11]] | |
) | |
assert_array_equal(a, b) | |
def test_check_width_shape_1_2(self): | |
# Check a pad_width of the form ((1, 2),). | |
# Regression test for issue gh-7808. | |
a = np.array([1, 2, 3]) | |
padded = np.pad(a, ((1, 2),), 'edge') | |
expected = np.array([1, 1, 2, 3, 3, 3]) | |
assert_array_equal(padded, expected) | |
a = np.array([[1, 2, 3], [4, 5, 6]]) | |
padded = np.pad(a, ((1, 2),), 'edge') | |
expected = np.pad(a, ((1, 2), (1, 2)), 'edge') | |
assert_array_equal(padded, expected) | |
a = np.arange(24).reshape(2, 3, 4) | |
padded = np.pad(a, ((1, 2),), 'edge') | |
expected = np.pad(a, ((1, 2), (1, 2), (1, 2)), 'edge') | |
assert_array_equal(padded, expected) | |
class TestEmpty: | |
def test_simple(self): | |
arr = np.arange(24).reshape(4, 6) | |
result = np.pad(arr, [(2, 3), (3, 1)], mode="empty") | |
assert result.shape == (9, 10) | |
assert_equal(arr, result[2:-3, 3:-1]) | |
def test_pad_empty_dimension(self): | |
arr = np.zeros((3, 0, 2)) | |
result = np.pad(arr, [(0,), (2,), (1,)], mode="empty") | |
assert result.shape == (3, 4, 4) | |
def test_legacy_vector_functionality(): | |
def _padwithtens(vector, pad_width, iaxis, kwargs): | |
vector[:pad_width[0]] = 10 | |
vector[-pad_width[1]:] = 10 | |
a = np.arange(6).reshape(2, 3) | |
a = np.pad(a, 2, _padwithtens) | |
b = np.array( | |
[[10, 10, 10, 10, 10, 10, 10], | |
[10, 10, 10, 10, 10, 10, 10], | |
[10, 10, 0, 1, 2, 10, 10], | |
[10, 10, 3, 4, 5, 10, 10], | |
[10, 10, 10, 10, 10, 10, 10], | |
[10, 10, 10, 10, 10, 10, 10]] | |
) | |
assert_array_equal(a, b) | |
def test_unicode_mode(): | |
a = np.pad([1], 2, mode=u'constant') | |
b = np.array([0, 0, 1, 0, 0]) | |
assert_array_equal(a, b) | |
def test_object_input(mode): | |
# Regression test for issue gh-11395. | |
a = np.full((4, 3), fill_value=None) | |
pad_amt = ((2, 3), (3, 2)) | |
b = np.full((9, 8), fill_value=None) | |
assert_array_equal(np.pad(a, pad_amt, mode=mode), b) | |
class TestPadWidth: | |
def test_misshaped_pad_width(self, pad_width, mode): | |
arr = np.arange(30).reshape((6, 5)) | |
match = "operands could not be broadcast together" | |
with pytest.raises(ValueError, match=match): | |
np.pad(arr, pad_width, mode) | |
def test_misshaped_pad_width_2(self, mode): | |
arr = np.arange(30).reshape((6, 5)) | |
match = ("input operand has more dimensions than allowed by the axis " | |
"remapping") | |
with pytest.raises(ValueError, match=match): | |
np.pad(arr, (((3,), (4,), (5,)), ((0,), (1,), (2,))), mode) | |
def test_negative_pad_width(self, pad_width, mode): | |
arr = np.arange(30).reshape((6, 5)) | |
match = "index can't contain negative values" | |
with pytest.raises(ValueError, match=match): | |
np.pad(arr, pad_width, mode) | |
def test_bad_type(self, pad_width, dtype, mode): | |
arr = np.arange(30).reshape((6, 5)) | |
match = "`pad_width` must be of integral type." | |
if dtype is not None: | |
# avoid DeprecationWarning when not specifying dtype | |
with pytest.raises(TypeError, match=match): | |
np.pad(arr, np.array(pad_width, dtype=dtype), mode) | |
else: | |
with pytest.raises(TypeError, match=match): | |
np.pad(arr, pad_width, mode) | |
with pytest.raises(TypeError, match=match): | |
np.pad(arr, np.array(pad_width), mode) | |
def test_pad_width_as_ndarray(self): | |
a = np.arange(12) | |
a = np.reshape(a, (4, 3)) | |
a = np.pad(a, np.array(((2, 3), (3, 2))), 'edge') | |
b = np.array( | |
[[0, 0, 0, 0, 1, 2, 2, 2], | |
[0, 0, 0, 0, 1, 2, 2, 2], | |
[0, 0, 0, 0, 1, 2, 2, 2], | |
[3, 3, 3, 3, 4, 5, 5, 5], | |
[6, 6, 6, 6, 7, 8, 8, 8], | |
[9, 9, 9, 9, 10, 11, 11, 11], | |
[9, 9, 9, 9, 10, 11, 11, 11], | |
[9, 9, 9, 9, 10, 11, 11, 11], | |
[9, 9, 9, 9, 10, 11, 11, 11]] | |
) | |
assert_array_equal(a, b) | |
def test_zero_pad_width(self, pad_width, mode): | |
arr = np.arange(30).reshape(6, 5) | |
assert_array_equal(arr, np.pad(arr, pad_width, mode=mode)) | |
def test_kwargs(mode): | |
"""Test behavior of pad's kwargs for the given mode.""" | |
allowed = _all_modes[mode] | |
not_allowed = {} | |
for kwargs in _all_modes.values(): | |
if kwargs != allowed: | |
not_allowed.update(kwargs) | |
# Test if allowed keyword arguments pass | |
np.pad([1, 2, 3], 1, mode, **allowed) | |
# Test if prohibited keyword arguments of other modes raise an error | |
for key, value in not_allowed.items(): | |
match = "unsupported keyword arguments for mode '{}'".format(mode) | |
with pytest.raises(ValueError, match=match): | |
np.pad([1, 2, 3], 1, mode, **{key: value}) | |
def test_constant_zero_default(): | |
arr = np.array([1, 1]) | |
assert_array_equal(np.pad(arr, 2), [0, 0, 1, 1, 0, 0]) | |
def test_unsupported_mode(mode): | |
match= "mode '{}' is not supported".format(mode) | |
with pytest.raises(ValueError, match=match): | |
np.pad([1, 2, 3], 4, mode=mode) | |
def test_non_contiguous_array(mode): | |
arr = np.arange(24).reshape(4, 6)[::2, ::2] | |
result = np.pad(arr, (2, 3), mode) | |
assert result.shape == (7, 8) | |
assert_equal(result[2:-3, 2:-3], arr) | |
def test_memory_layout_persistence(mode): | |
"""Test if C and F order is preserved for all pad modes.""" | |
x = np.ones((5, 10), order='C') | |
assert np.pad(x, 5, mode).flags["C_CONTIGUOUS"] | |
x = np.ones((5, 10), order='F') | |
assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"] | |
def test_dtype_persistence(dtype, mode): | |
arr = np.zeros((3, 2, 1), dtype=dtype) | |
result = np.pad(arr, 1, mode=mode) | |
assert result.dtype == dtype | |