Spaces:
Running
Running
import pytest | |
import numpy as np | |
from numpy.testing import ( | |
assert_, assert_equal, assert_array_equal, assert_almost_equal, | |
assert_array_almost_equal, assert_raises, assert_raises_regex, | |
assert_warns | |
) | |
from numpy.lib.index_tricks import ( | |
mgrid, ogrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from, | |
index_exp, ndindex, r_, s_, ix_ | |
) | |
class TestRavelUnravelIndex: | |
def test_basic(self): | |
assert_equal(np.unravel_index(2, (2, 2)), (1, 0)) | |
# test that new shape argument works properly | |
assert_equal(np.unravel_index(indices=2, | |
shape=(2, 2)), | |
(1, 0)) | |
# test that an invalid second keyword argument | |
# is properly handled, including the old name `dims`. | |
with assert_raises(TypeError): | |
np.unravel_index(indices=2, hape=(2, 2)) | |
with assert_raises(TypeError): | |
np.unravel_index(2, hape=(2, 2)) | |
with assert_raises(TypeError): | |
np.unravel_index(254, ims=(17, 94)) | |
with assert_raises(TypeError): | |
np.unravel_index(254, dims=(17, 94)) | |
assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2) | |
assert_equal(np.unravel_index(254, (17, 94)), (2, 66)) | |
assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254) | |
assert_raises(ValueError, np.unravel_index, -1, (2, 2)) | |
assert_raises(TypeError, np.unravel_index, 0.5, (2, 2)) | |
assert_raises(ValueError, np.unravel_index, 4, (2, 2)) | |
assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2)) | |
assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2)) | |
assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2)) | |
assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2)) | |
assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2)) | |
assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4]) | |
assert_equal( | |
np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4) | |
arr = np.array([[3, 6, 6], [4, 5, 1]]) | |
assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37]) | |
assert_equal( | |
np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13]) | |
assert_equal( | |
np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19]) | |
assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')), | |
[12, 13, 13]) | |
assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621) | |
assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)), | |
[[3, 6, 6], [4, 5, 1]]) | |
assert_equal( | |
np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'), | |
[[3, 6, 6], [4, 5, 1]]) | |
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1]) | |
def test_empty_indices(self): | |
msg1 = 'indices must be integral: the provided empty sequence was' | |
msg2 = 'only int indices permitted' | |
assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5)) | |
assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5)) | |
assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]), | |
(10, 3, 5)) | |
assert_equal(np.unravel_index(np.array([],dtype=int), (10, 3, 5)), | |
[[], [], []]) | |
assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []), | |
(10, 3)) | |
assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']), | |
(10, 3)) | |
assert_raises_regex(TypeError, msg2, np.ravel_multi_index, | |
(np.array([]), np.array([])), (5, 3)) | |
assert_equal(np.ravel_multi_index( | |
(np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), []) | |
assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int), | |
(5, 3)), []) | |
def test_big_indices(self): | |
# ravel_multi_index for big indices (issue #7546) | |
if np.intp == np.int64: | |
arr = ([1, 29], [3, 5], [3, 117], [19, 2], | |
[2379, 1284], [2, 2], [0, 1]) | |
assert_equal( | |
np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)), | |
[5627771580, 117259570957]) | |
# test unravel_index for big indices (issue #9538) | |
assert_raises(ValueError, np.unravel_index, 1, (2**32-1, 2**31+1)) | |
# test overflow checking for too big array (issue #7546) | |
dummy_arr = ([0],[0]) | |
half_max = np.iinfo(np.intp).max // 2 | |
assert_equal( | |
np.ravel_multi_index(dummy_arr, (half_max, 2)), [0]) | |
assert_raises(ValueError, | |
np.ravel_multi_index, dummy_arr, (half_max+1, 2)) | |
assert_equal( | |
np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0]) | |
assert_raises(ValueError, | |
np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F') | |
def test_dtypes(self): | |
# Test with different data types | |
for dtype in [np.int16, np.uint16, np.int32, | |
np.uint32, np.int64, np.uint64]: | |
coords = np.array( | |
[[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype) | |
shape = (5, 8) | |
uncoords = 8*coords[0]+coords[1] | |
assert_equal(np.ravel_multi_index(coords, shape), uncoords) | |
assert_equal(coords, np.unravel_index(uncoords, shape)) | |
uncoords = coords[0]+5*coords[1] | |
assert_equal( | |
np.ravel_multi_index(coords, shape, order='F'), uncoords) | |
assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) | |
coords = np.array( | |
[[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]], | |
dtype=dtype) | |
shape = (5, 8, 10) | |
uncoords = 10*(8*coords[0]+coords[1])+coords[2] | |
assert_equal(np.ravel_multi_index(coords, shape), uncoords) | |
assert_equal(coords, np.unravel_index(uncoords, shape)) | |
uncoords = coords[0]+5*(coords[1]+8*coords[2]) | |
assert_equal( | |
np.ravel_multi_index(coords, shape, order='F'), uncoords) | |
assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) | |
def test_clipmodes(self): | |
# Test clipmodes | |
assert_equal( | |
np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'), | |
np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12))) | |
assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), | |
mode=( | |
'wrap', 'raise', 'clip', 'raise')), | |
np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12))) | |
assert_raises( | |
ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12)) | |
def test_writeability(self): | |
# See gh-7269 | |
x, y = np.unravel_index([1, 2, 3], (4, 5)) | |
assert_(x.flags.writeable) | |
assert_(y.flags.writeable) | |
def test_0d(self): | |
# gh-580 | |
x = np.unravel_index(0, ()) | |
assert_equal(x, ()) | |
assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ()) | |
assert_raises_regex( | |
ValueError, "out of bounds", np.unravel_index, [1], ()) | |
def test_empty_array_ravel(self, mode): | |
res = np.ravel_multi_index( | |
np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode) | |
assert(res.shape == (0,)) | |
with assert_raises(ValueError): | |
np.ravel_multi_index( | |
np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode) | |
def test_empty_array_unravel(self): | |
res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0)) | |
# res is a tuple of three empty arrays | |
assert(len(res) == 3) | |
assert(all(a.shape == (0,) for a in res)) | |
with assert_raises(ValueError): | |
np.unravel_index([1], (2, 1, 0)) | |
class TestGrid: | |
def test_basic(self): | |
a = mgrid[-1:1:10j] | |
b = mgrid[-1:1:0.1] | |
assert_(a.shape == (10,)) | |
assert_(b.shape == (20,)) | |
assert_(a[0] == -1) | |
assert_almost_equal(a[-1], 1) | |
assert_(b[0] == -1) | |
assert_almost_equal(b[1]-b[0], 0.1, 11) | |
assert_almost_equal(b[-1], b[0]+19*0.1, 11) | |
assert_almost_equal(a[1]-a[0], 2.0/9.0, 11) | |
def test_linspace_equivalence(self): | |
y, st = np.linspace(2, 10, retstep=True) | |
assert_almost_equal(st, 8/49.0) | |
assert_array_almost_equal(y, mgrid[2:10:50j], 13) | |
def test_nd(self): | |
c = mgrid[-1:1:10j, -2:2:10j] | |
d = mgrid[-1:1:0.1, -2:2:0.2] | |
assert_(c.shape == (2, 10, 10)) | |
assert_(d.shape == (2, 20, 20)) | |
assert_array_equal(c[0][0, :], -np.ones(10, 'd')) | |
assert_array_equal(c[1][:, 0], -2*np.ones(10, 'd')) | |
assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11) | |
assert_array_almost_equal(c[1][:, -1], 2*np.ones(10, 'd'), 11) | |
assert_array_almost_equal(d[0, 1, :] - d[0, 0, :], | |
0.1*np.ones(20, 'd'), 11) | |
assert_array_almost_equal(d[1, :, 1] - d[1, :, 0], | |
0.2*np.ones(20, 'd'), 11) | |
def test_sparse(self): | |
grid_full = mgrid[-1:1:10j, -2:2:10j] | |
grid_sparse = ogrid[-1:1:10j, -2:2:10j] | |
# sparse grids can be made dense by broadcasting | |
grid_broadcast = np.broadcast_arrays(*grid_sparse) | |
for f, b in zip(grid_full, grid_broadcast): | |
assert_equal(f, b) | |
def test_mgrid_size_none_handling(self, start, stop, step, expected): | |
# regression test None value handling for | |
# start and step values used by mgrid; | |
# internally, this aims to cover previously | |
# unexplored code paths in nd_grid() | |
grid = mgrid[start:stop:step, start:stop:step] | |
# need a smaller grid to explore one of the | |
# untested code paths | |
grid_small = mgrid[start:stop:step] | |
assert_equal(grid.size, expected[0]) | |
assert_equal(grid_small.size, expected[1]) | |
def test_accepts_npfloating(self): | |
# regression test for #16466 | |
grid64 = mgrid[0.1:0.33:0.1, ] | |
grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1), ] | |
assert_(grid32.dtype == np.float64) | |
assert_array_almost_equal(grid64, grid32) | |
# different code path for single slice | |
grid64 = mgrid[0.1:0.33:0.1] | |
grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1)] | |
assert_(grid32.dtype == np.float64) | |
assert_array_almost_equal(grid64, grid32) | |
def test_accepts_npcomplexfloating(self): | |
# Related to #16466 | |
assert_array_almost_equal( | |
mgrid[0.1:0.3:3j, ], mgrid[0.1:0.3:np.complex64(3j), ] | |
) | |
# different code path for single slice | |
assert_array_almost_equal( | |
mgrid[0.1:0.3:3j], mgrid[0.1:0.3:np.complex64(3j)] | |
) | |
class TestConcatenator: | |
def test_1d(self): | |
assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6])) | |
b = np.ones(5) | |
c = r_[b, 0, 0, b] | |
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) | |
def test_mixed_type(self): | |
g = r_[10.1, 1:10] | |
assert_(g.dtype == 'f8') | |
def test_more_mixed_type(self): | |
g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0] | |
assert_(g.dtype == 'f8') | |
def test_complex_step(self): | |
# Regression test for #12262 | |
g = r_[0:36:100j] | |
assert_(g.shape == (100,)) | |
# Related to #16466 | |
g = r_[0:36:np.complex64(100j)] | |
assert_(g.shape == (100,)) | |
def test_2d(self): | |
b = np.random.rand(5, 5) | |
c = np.random.rand(5, 5) | |
d = r_['1', b, c] # append columns | |
assert_(d.shape == (5, 10)) | |
assert_array_equal(d[:, :5], b) | |
assert_array_equal(d[:, 5:], c) | |
d = r_[b, c] | |
assert_(d.shape == (10, 5)) | |
assert_array_equal(d[:5, :], b) | |
assert_array_equal(d[5:, :], c) | |
def test_0d(self): | |
assert_equal(r_[0, np.array(1), 2], [0, 1, 2]) | |
assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3]) | |
assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3]) | |
class TestNdenumerate: | |
def test_basic(self): | |
a = np.array([[1, 2], [3, 4]]) | |
assert_equal(list(ndenumerate(a)), | |
[((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)]) | |
class TestIndexExpression: | |
def test_regression_1(self): | |
# ticket #1196 | |
a = np.arange(2) | |
assert_equal(a[:-1], a[s_[:-1]]) | |
assert_equal(a[:-1], a[index_exp[:-1]]) | |
def test_simple_1(self): | |
a = np.random.rand(4, 5, 6) | |
assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]]) | |
assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]]) | |
class TestIx_: | |
def test_regression_1(self): | |
# Test empty untyped inputs create outputs of indexing type, gh-5804 | |
a, = np.ix_(range(0)) | |
assert_equal(a.dtype, np.intp) | |
a, = np.ix_([]) | |
assert_equal(a.dtype, np.intp) | |
# but if the type is specified, don't change it | |
a, = np.ix_(np.array([], dtype=np.float32)) | |
assert_equal(a.dtype, np.float32) | |
def test_shape_and_dtype(self): | |
sizes = (4, 5, 3, 2) | |
# Test both lists and arrays | |
for func in (range, np.arange): | |
arrays = np.ix_(*[func(sz) for sz in sizes]) | |
for k, (a, sz) in enumerate(zip(arrays, sizes)): | |
assert_equal(a.shape[k], sz) | |
assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k)) | |
assert_(np.issubdtype(a.dtype, np.integer)) | |
def test_bool(self): | |
bool_a = [True, False, True, True] | |
int_a, = np.nonzero(bool_a) | |
assert_equal(np.ix_(bool_a)[0], int_a) | |
def test_1d_only(self): | |
idx2d = [[1, 2, 3], [4, 5, 6]] | |
assert_raises(ValueError, np.ix_, idx2d) | |
def test_repeated_input(self): | |
length_of_vector = 5 | |
x = np.arange(length_of_vector) | |
out = ix_(x, x) | |
assert_equal(out[0].shape, (length_of_vector, 1)) | |
assert_equal(out[1].shape, (1, length_of_vector)) | |
# check that input shape is not modified | |
assert_equal(x.shape, (length_of_vector,)) | |
def test_c_(): | |
a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])] | |
assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]]) | |
class TestFillDiagonal: | |
def test_basic(self): | |
a = np.zeros((3, 3), int) | |
fill_diagonal(a, 5) | |
assert_array_equal( | |
a, np.array([[5, 0, 0], | |
[0, 5, 0], | |
[0, 0, 5]]) | |
) | |
def test_tall_matrix(self): | |
a = np.zeros((10, 3), int) | |
fill_diagonal(a, 5) | |
assert_array_equal( | |
a, np.array([[5, 0, 0], | |
[0, 5, 0], | |
[0, 0, 5], | |
[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 0]]) | |
) | |
def test_tall_matrix_wrap(self): | |
a = np.zeros((10, 3), int) | |
fill_diagonal(a, 5, True) | |
assert_array_equal( | |
a, np.array([[5, 0, 0], | |
[0, 5, 0], | |
[0, 0, 5], | |
[0, 0, 0], | |
[5, 0, 0], | |
[0, 5, 0], | |
[0, 0, 5], | |
[0, 0, 0], | |
[5, 0, 0], | |
[0, 5, 0]]) | |
) | |
def test_wide_matrix(self): | |
a = np.zeros((3, 10), int) | |
fill_diagonal(a, 5) | |
assert_array_equal( | |
a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 5, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]) | |
) | |
def test_operate_4d_array(self): | |
a = np.zeros((3, 3, 3, 3), int) | |
fill_diagonal(a, 4) | |
i = np.array([0, 1, 2]) | |
assert_equal(np.where(a != 0), (i, i, i, i)) | |
def test_low_dim_handling(self): | |
# raise error with low dimensionality | |
a = np.zeros(3, int) | |
with assert_raises_regex(ValueError, "at least 2-d"): | |
fill_diagonal(a, 5) | |
def test_hetero_shape_handling(self): | |
# raise error with high dimensionality and | |
# shape mismatch | |
a = np.zeros((3,3,7,3), int) | |
with assert_raises_regex(ValueError, "equal length"): | |
fill_diagonal(a, 2) | |
def test_diag_indices(): | |
di = diag_indices(4) | |
a = np.array([[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[13, 14, 15, 16]]) | |
a[di] = 100 | |
assert_array_equal( | |
a, np.array([[100, 2, 3, 4], | |
[5, 100, 7, 8], | |
[9, 10, 100, 12], | |
[13, 14, 15, 100]]) | |
) | |
# Now, we create indices to manipulate a 3-d array: | |
d3 = diag_indices(2, 3) | |
# And use it to set the diagonal of a zeros array to 1: | |
a = np.zeros((2, 2, 2), int) | |
a[d3] = 1 | |
assert_array_equal( | |
a, np.array([[[1, 0], | |
[0, 0]], | |
[[0, 0], | |
[0, 1]]]) | |
) | |
class TestDiagIndicesFrom: | |
def test_diag_indices_from(self): | |
x = np.random.random((4, 4)) | |
r, c = diag_indices_from(x) | |
assert_array_equal(r, np.arange(4)) | |
assert_array_equal(c, np.arange(4)) | |
def test_error_small_input(self): | |
x = np.ones(7) | |
with assert_raises_regex(ValueError, "at least 2-d"): | |
diag_indices_from(x) | |
def test_error_shape_mismatch(self): | |
x = np.zeros((3, 3, 2, 3), int) | |
with assert_raises_regex(ValueError, "equal length"): | |
diag_indices_from(x) | |
def test_ndindex(): | |
x = list(ndindex(1, 2, 3)) | |
expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))] | |
assert_array_equal(x, expected) | |
x = list(ndindex((1, 2, 3))) | |
assert_array_equal(x, expected) | |
# Test use of scalars and tuples | |
x = list(ndindex((3,))) | |
assert_array_equal(x, list(ndindex(3))) | |
# Make sure size argument is optional | |
x = list(ndindex()) | |
assert_equal(x, [()]) | |
x = list(ndindex(())) | |
assert_equal(x, [()]) | |
# Make sure 0-sized ndindex works correctly | |
x = list(ndindex(*[0])) | |
assert_equal(x, []) | |