Spaces:
Running
Running
import warnings | |
import pytest | |
import numpy as np | |
from numpy.lib.nanfunctions import _nan_mask, _replace_nan | |
from numpy.testing import ( | |
assert_, assert_equal, assert_almost_equal, assert_no_warnings, | |
assert_raises, assert_array_equal, suppress_warnings | |
) | |
# Test data | |
_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], | |
[0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], | |
[np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], | |
[0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) | |
# Rows of _ndat with nans removed | |
_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), | |
np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), | |
np.array([0.1042, -0.5954]), | |
np.array([0.1610, 0.1859, 0.3146])] | |
# Rows of _ndat with nans converted to ones | |
_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170], | |
[0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833], | |
[1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954], | |
[0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]]) | |
# Rows of _ndat with nans converted to zeros | |
_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170], | |
[0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833], | |
[0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954], | |
[0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]]) | |
class TestNanFunctions_MinMax: | |
nanfuncs = [np.nanmin, np.nanmax] | |
stdfuncs = [np.min, np.max] | |
def test_mutation(self): | |
# Check that passed array is not modified. | |
ndat = _ndat.copy() | |
for f in self.nanfuncs: | |
f(ndat) | |
assert_equal(ndat, _ndat) | |
def test_keepdims(self): | |
mat = np.eye(3) | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
for axis in [None, 0, 1]: | |
tgt = rf(mat, axis=axis, keepdims=True) | |
res = nf(mat, axis=axis, keepdims=True) | |
assert_(res.ndim == tgt.ndim) | |
def test_out(self): | |
mat = np.eye(3) | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
resout = np.zeros(3) | |
tgt = rf(mat, axis=1) | |
res = nf(mat, axis=1, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
def test_dtype_from_input(self): | |
codes = 'efdgFDG' | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
for c in codes: | |
mat = np.eye(3, dtype=c) | |
tgt = rf(mat, axis=1).dtype.type | |
res = nf(mat, axis=1).dtype.type | |
assert_(res is tgt) | |
# scalar case | |
tgt = rf(mat, axis=None).dtype.type | |
res = nf(mat, axis=None).dtype.type | |
assert_(res is tgt) | |
def test_result_values(self): | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
tgt = [rf(d) for d in _rdat] | |
res = nf(_ndat, axis=1) | |
assert_almost_equal(res, tgt) | |
def test_allnans(self): | |
mat = np.array([np.nan]*9).reshape(3, 3) | |
for f in self.nanfuncs: | |
for axis in [None, 0, 1]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(f(mat, axis=axis)).all()) | |
assert_(len(w) == 1, 'no warning raised') | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
# Check scalars | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(f(np.nan))) | |
assert_(len(w) == 1, 'no warning raised') | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
def test_masked(self): | |
mat = np.ma.fix_invalid(_ndat) | |
msk = mat._mask.copy() | |
for f in [np.nanmin]: | |
res = f(mat, axis=1) | |
tgt = f(_ndat, axis=1) | |
assert_equal(res, tgt) | |
assert_equal(mat._mask, msk) | |
assert_(not np.isinf(mat).any()) | |
def test_scalar(self): | |
for f in self.nanfuncs: | |
assert_(f(0.) == 0.) | |
def test_subclass(self): | |
class MyNDArray(np.ndarray): | |
pass | |
# Check that it works and that type and | |
# shape are preserved | |
mine = np.eye(3).view(MyNDArray) | |
for f in self.nanfuncs: | |
res = f(mine, axis=0) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == (3,)) | |
res = f(mine, axis=1) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == (3,)) | |
res = f(mine) | |
assert_(res.shape == ()) | |
# check that rows of nan are dealt with for subclasses (#4628) | |
mine[1] = np.nan | |
for f in self.nanfuncs: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = f(mine, axis=0) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(not np.any(np.isnan(res))) | |
assert_(len(w) == 0) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = f(mine, axis=1) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(np.isnan(res[1]) and not np.isnan(res[0]) | |
and not np.isnan(res[2])) | |
assert_(len(w) == 1, 'no warning raised') | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = f(mine) | |
assert_(res.shape == ()) | |
assert_(res != np.nan) | |
assert_(len(w) == 0) | |
def test_object_array(self): | |
arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object) | |
assert_equal(np.nanmin(arr), 1.0) | |
assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0]) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
# assert_equal does not work on object arrays of nan | |
assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan]) | |
assert_(len(w) == 1, 'no warning raised') | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
class TestNanFunctions_ArgminArgmax: | |
nanfuncs = [np.nanargmin, np.nanargmax] | |
def test_mutation(self): | |
# Check that passed array is not modified. | |
ndat = _ndat.copy() | |
for f in self.nanfuncs: | |
f(ndat) | |
assert_equal(ndat, _ndat) | |
def test_result_values(self): | |
for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]): | |
for row in _ndat: | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, "invalid value encountered in") | |
ind = f(row) | |
val = row[ind] | |
# comparing with NaN is tricky as the result | |
# is always false except for NaN != NaN | |
assert_(not np.isnan(val)) | |
assert_(not fcmp(val, row).any()) | |
assert_(not np.equal(val, row[:ind]).any()) | |
def test_allnans(self): | |
mat = np.array([np.nan]*9).reshape(3, 3) | |
for f in self.nanfuncs: | |
for axis in [None, 0, 1]: | |
assert_raises(ValueError, f, mat, axis=axis) | |
assert_raises(ValueError, f, np.nan) | |
def test_empty(self): | |
mat = np.zeros((0, 3)) | |
for f in self.nanfuncs: | |
for axis in [0, None]: | |
assert_raises(ValueError, f, mat, axis=axis) | |
for axis in [1]: | |
res = f(mat, axis=axis) | |
assert_equal(res, np.zeros(0)) | |
def test_scalar(self): | |
for f in self.nanfuncs: | |
assert_(f(0.) == 0.) | |
def test_subclass(self): | |
class MyNDArray(np.ndarray): | |
pass | |
# Check that it works and that type and | |
# shape are preserved | |
mine = np.eye(3).view(MyNDArray) | |
for f in self.nanfuncs: | |
res = f(mine, axis=0) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == (3,)) | |
res = f(mine, axis=1) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == (3,)) | |
res = f(mine) | |
assert_(res.shape == ()) | |
class TestNanFunctions_IntTypes: | |
int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8, | |
np.uint16, np.uint32, np.uint64) | |
mat = np.array([127, 39, 93, 87, 46]) | |
def integer_arrays(self): | |
for dtype in self.int_types: | |
yield self.mat.astype(dtype) | |
def test_nanmin(self): | |
tgt = np.min(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanmin(mat), tgt) | |
def test_nanmax(self): | |
tgt = np.max(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanmax(mat), tgt) | |
def test_nanargmin(self): | |
tgt = np.argmin(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanargmin(mat), tgt) | |
def test_nanargmax(self): | |
tgt = np.argmax(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanargmax(mat), tgt) | |
def test_nansum(self): | |
tgt = np.sum(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nansum(mat), tgt) | |
def test_nanprod(self): | |
tgt = np.prod(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanprod(mat), tgt) | |
def test_nancumsum(self): | |
tgt = np.cumsum(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nancumsum(mat), tgt) | |
def test_nancumprod(self): | |
tgt = np.cumprod(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nancumprod(mat), tgt) | |
def test_nanmean(self): | |
tgt = np.mean(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanmean(mat), tgt) | |
def test_nanvar(self): | |
tgt = np.var(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanvar(mat), tgt) | |
tgt = np.var(mat, ddof=1) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanvar(mat, ddof=1), tgt) | |
def test_nanstd(self): | |
tgt = np.std(self.mat) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanstd(mat), tgt) | |
tgt = np.std(self.mat, ddof=1) | |
for mat in self.integer_arrays(): | |
assert_equal(np.nanstd(mat, ddof=1), tgt) | |
class SharedNanFunctionsTestsMixin: | |
def test_mutation(self): | |
# Check that passed array is not modified. | |
ndat = _ndat.copy() | |
for f in self.nanfuncs: | |
f(ndat) | |
assert_equal(ndat, _ndat) | |
def test_keepdims(self): | |
mat = np.eye(3) | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
for axis in [None, 0, 1]: | |
tgt = rf(mat, axis=axis, keepdims=True) | |
res = nf(mat, axis=axis, keepdims=True) | |
assert_(res.ndim == tgt.ndim) | |
def test_out(self): | |
mat = np.eye(3) | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
resout = np.zeros(3) | |
tgt = rf(mat, axis=1) | |
res = nf(mat, axis=1, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
def test_dtype_from_dtype(self): | |
mat = np.eye(3) | |
codes = 'efdgFDG' | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
for c in codes: | |
with suppress_warnings() as sup: | |
if nf in {np.nanstd, np.nanvar} and c in 'FDG': | |
# Giving the warning is a small bug, see gh-8000 | |
sup.filter(np.ComplexWarning) | |
tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type | |
res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type | |
assert_(res is tgt) | |
# scalar case | |
tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type | |
res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type | |
assert_(res is tgt) | |
def test_dtype_from_char(self): | |
mat = np.eye(3) | |
codes = 'efdgFDG' | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
for c in codes: | |
with suppress_warnings() as sup: | |
if nf in {np.nanstd, np.nanvar} and c in 'FDG': | |
# Giving the warning is a small bug, see gh-8000 | |
sup.filter(np.ComplexWarning) | |
tgt = rf(mat, dtype=c, axis=1).dtype.type | |
res = nf(mat, dtype=c, axis=1).dtype.type | |
assert_(res is tgt) | |
# scalar case | |
tgt = rf(mat, dtype=c, axis=None).dtype.type | |
res = nf(mat, dtype=c, axis=None).dtype.type | |
assert_(res is tgt) | |
def test_dtype_from_input(self): | |
codes = 'efdgFDG' | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
for c in codes: | |
mat = np.eye(3, dtype=c) | |
tgt = rf(mat, axis=1).dtype.type | |
res = nf(mat, axis=1).dtype.type | |
assert_(res is tgt, "res %s, tgt %s" % (res, tgt)) | |
# scalar case | |
tgt = rf(mat, axis=None).dtype.type | |
res = nf(mat, axis=None).dtype.type | |
assert_(res is tgt) | |
def test_result_values(self): | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
tgt = [rf(d) for d in _rdat] | |
res = nf(_ndat, axis=1) | |
assert_almost_equal(res, tgt) | |
def test_scalar(self): | |
for f in self.nanfuncs: | |
assert_(f(0.) == 0.) | |
def test_subclass(self): | |
class MyNDArray(np.ndarray): | |
pass | |
# Check that it works and that type and | |
# shape are preserved | |
array = np.eye(3) | |
mine = array.view(MyNDArray) | |
for f in self.nanfuncs: | |
expected_shape = f(array, axis=0).shape | |
res = f(mine, axis=0) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == expected_shape) | |
expected_shape = f(array, axis=1).shape | |
res = f(mine, axis=1) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == expected_shape) | |
expected_shape = f(array).shape | |
res = f(mine) | |
assert_(isinstance(res, MyNDArray)) | |
assert_(res.shape == expected_shape) | |
class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin): | |
nanfuncs = [np.nansum, np.nanprod] | |
stdfuncs = [np.sum, np.prod] | |
def test_allnans(self): | |
# Check for FutureWarning | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = np.nansum([np.nan]*3, axis=None) | |
assert_(res == 0, 'result is not 0') | |
assert_(len(w) == 0, 'warning raised') | |
# Check scalar | |
res = np.nansum(np.nan) | |
assert_(res == 0, 'result is not 0') | |
assert_(len(w) == 0, 'warning raised') | |
# Check there is no warning for not all-nan | |
np.nansum([0]*3, axis=None) | |
assert_(len(w) == 0, 'unwanted warning raised') | |
def test_empty(self): | |
for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]): | |
mat = np.zeros((0, 3)) | |
tgt = [tgt_value]*3 | |
res = f(mat, axis=0) | |
assert_equal(res, tgt) | |
tgt = [] | |
res = f(mat, axis=1) | |
assert_equal(res, tgt) | |
tgt = tgt_value | |
res = f(mat, axis=None) | |
assert_equal(res, tgt) | |
class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin): | |
nanfuncs = [np.nancumsum, np.nancumprod] | |
stdfuncs = [np.cumsum, np.cumprod] | |
def test_allnans(self): | |
for f, tgt_value in zip(self.nanfuncs, [0, 1]): | |
# Unlike other nan-functions, sum/prod/cumsum/cumprod don't warn on all nan input | |
with assert_no_warnings(): | |
res = f([np.nan]*3, axis=None) | |
tgt = tgt_value*np.ones((3)) | |
assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((3))' % (tgt_value)) | |
# Check scalar | |
res = f(np.nan) | |
tgt = tgt_value*np.ones((1)) | |
assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((1))' % (tgt_value)) | |
# Check there is no warning for not all-nan | |
f([0]*3, axis=None) | |
def test_empty(self): | |
for f, tgt_value in zip(self.nanfuncs, [0, 1]): | |
mat = np.zeros((0, 3)) | |
tgt = tgt_value*np.ones((0, 3)) | |
res = f(mat, axis=0) | |
assert_equal(res, tgt) | |
tgt = mat | |
res = f(mat, axis=1) | |
assert_equal(res, tgt) | |
tgt = np.zeros((0)) | |
res = f(mat, axis=None) | |
assert_equal(res, tgt) | |
def test_keepdims(self): | |
for f, g in zip(self.nanfuncs, self.stdfuncs): | |
mat = np.eye(3) | |
for axis in [None, 0, 1]: | |
tgt = f(mat, axis=axis, out=None) | |
res = g(mat, axis=axis, out=None) | |
assert_(res.ndim == tgt.ndim) | |
for f in self.nanfuncs: | |
d = np.ones((3, 5, 7, 11)) | |
# Randomly set some elements to NaN: | |
rs = np.random.RandomState(0) | |
d[rs.rand(*d.shape) < 0.5] = np.nan | |
res = f(d, axis=None) | |
assert_equal(res.shape, (1155,)) | |
for axis in np.arange(4): | |
res = f(d, axis=axis) | |
assert_equal(res.shape, (3, 5, 7, 11)) | |
def test_result_values(self): | |
for axis in (-2, -1, 0, 1, None): | |
tgt = np.cumprod(_ndat_ones, axis=axis) | |
res = np.nancumprod(_ndat, axis=axis) | |
assert_almost_equal(res, tgt) | |
tgt = np.cumsum(_ndat_zeros,axis=axis) | |
res = np.nancumsum(_ndat, axis=axis) | |
assert_almost_equal(res, tgt) | |
def test_out(self): | |
mat = np.eye(3) | |
for nf, rf in zip(self.nanfuncs, self.stdfuncs): | |
resout = np.eye(3) | |
for axis in (-2, -1, 0, 1): | |
tgt = rf(mat, axis=axis) | |
res = nf(mat, axis=axis, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin): | |
nanfuncs = [np.nanmean, np.nanvar, np.nanstd] | |
stdfuncs = [np.mean, np.var, np.std] | |
def test_dtype_error(self): | |
for f in self.nanfuncs: | |
for dtype in [np.bool_, np.int_, np.object_]: | |
assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype) | |
def test_out_dtype_error(self): | |
for f in self.nanfuncs: | |
for dtype in [np.bool_, np.int_, np.object_]: | |
out = np.empty(_ndat.shape[0], dtype=dtype) | |
assert_raises(TypeError, f, _ndat, axis=1, out=out) | |
def test_ddof(self): | |
nanfuncs = [np.nanvar, np.nanstd] | |
stdfuncs = [np.var, np.std] | |
for nf, rf in zip(nanfuncs, stdfuncs): | |
for ddof in [0, 1]: | |
tgt = [rf(d, ddof=ddof) for d in _rdat] | |
res = nf(_ndat, axis=1, ddof=ddof) | |
assert_almost_equal(res, tgt) | |
def test_ddof_too_big(self): | |
nanfuncs = [np.nanvar, np.nanstd] | |
stdfuncs = [np.var, np.std] | |
dsize = [len(d) for d in _rdat] | |
for nf, rf in zip(nanfuncs, stdfuncs): | |
for ddof in range(5): | |
with suppress_warnings() as sup: | |
sup.record(RuntimeWarning) | |
sup.filter(np.ComplexWarning) | |
tgt = [ddof >= d for d in dsize] | |
res = nf(_ndat, axis=1, ddof=ddof) | |
assert_equal(np.isnan(res), tgt) | |
if any(tgt): | |
assert_(len(sup.log) == 1) | |
else: | |
assert_(len(sup.log) == 0) | |
def test_allnans(self): | |
mat = np.array([np.nan]*9).reshape(3, 3) | |
for f in self.nanfuncs: | |
for axis in [None, 0, 1]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(f(mat, axis=axis)).all()) | |
assert_(len(w) == 1) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
# Check scalar | |
assert_(np.isnan(f(np.nan))) | |
assert_(len(w) == 2) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
def test_empty(self): | |
mat = np.zeros((0, 3)) | |
for f in self.nanfuncs: | |
for axis in [0, None]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(f(mat, axis=axis)).all()) | |
assert_(len(w) == 1) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
for axis in [1]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_equal(f(mat, axis=axis), np.zeros([])) | |
assert_(len(w) == 0) | |
_TIME_UNITS = ( | |
"Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as" | |
) | |
# All `inexact` + `timdelta64` type codes | |
_TYPE_CODES = list(np.typecodes["AllFloat"]) | |
_TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS] | |
class TestNanFunctions_Median: | |
def test_mutation(self): | |
# Check that passed array is not modified. | |
ndat = _ndat.copy() | |
np.nanmedian(ndat) | |
assert_equal(ndat, _ndat) | |
def test_keepdims(self): | |
mat = np.eye(3) | |
for axis in [None, 0, 1]: | |
tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) | |
res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) | |
assert_(res.ndim == tgt.ndim) | |
d = np.ones((3, 5, 7, 11)) | |
# Randomly set some elements to NaN: | |
w = np.random.random((4, 200)) * np.array(d.shape)[:, None] | |
w = w.astype(np.intp) | |
d[tuple(w)] = np.nan | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning) | |
res = np.nanmedian(d, axis=None, keepdims=True) | |
assert_equal(res.shape, (1, 1, 1, 1)) | |
res = np.nanmedian(d, axis=(0, 1), keepdims=True) | |
assert_equal(res.shape, (1, 1, 7, 11)) | |
res = np.nanmedian(d, axis=(0, 3), keepdims=True) | |
assert_equal(res.shape, (1, 5, 7, 1)) | |
res = np.nanmedian(d, axis=(1,), keepdims=True) | |
assert_equal(res.shape, (3, 1, 7, 11)) | |
res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True) | |
assert_equal(res.shape, (1, 1, 1, 1)) | |
res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) | |
assert_equal(res.shape, (1, 1, 7, 1)) | |
def test_out(self): | |
mat = np.random.rand(3, 3) | |
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) | |
resout = np.zeros(3) | |
tgt = np.median(mat, axis=1) | |
res = np.nanmedian(nan_mat, axis=1, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
# 0-d output: | |
resout = np.zeros(()) | |
tgt = np.median(mat, axis=None) | |
res = np.nanmedian(nan_mat, axis=None, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
res = np.nanmedian(nan_mat, axis=(0, 1), out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
def test_small_large(self): | |
# test the small and large code paths, current cutoff 400 elements | |
for s in [5, 20, 51, 200, 1000]: | |
d = np.random.randn(4, s) | |
# Randomly set some elements to NaN: | |
w = np.random.randint(0, d.size, size=d.size // 5) | |
d.ravel()[w] = np.nan | |
d[:,0] = 1. # ensure at least one good value | |
# use normal median without nans to compare | |
tgt = [] | |
for x in d: | |
nonan = np.compress(~np.isnan(x), x) | |
tgt.append(np.median(nonan, overwrite_input=True)) | |
assert_array_equal(np.nanmedian(d, axis=-1), tgt) | |
def test_result_values(self): | |
tgt = [np.median(d) for d in _rdat] | |
res = np.nanmedian(_ndat, axis=1) | |
assert_almost_equal(res, tgt) | |
def test_allnans(self, dtype, axis): | |
mat = np.full((3, 3), np.nan).astype(dtype) | |
with suppress_warnings() as sup: | |
sup.record(RuntimeWarning) | |
output = np.nanmedian(mat, axis=axis) | |
assert output.dtype == mat.dtype | |
assert np.isnan(output).all() | |
if axis is None: | |
assert_(len(sup.log) == 1) | |
else: | |
assert_(len(sup.log) == 3) | |
# Check scalar | |
scalar = np.array(np.nan).astype(dtype)[()] | |
output_scalar = np.nanmedian(scalar) | |
assert output_scalar.dtype == scalar.dtype | |
assert np.isnan(output_scalar) | |
if axis is None: | |
assert_(len(sup.log) == 2) | |
else: | |
assert_(len(sup.log) == 4) | |
def test_empty(self): | |
mat = np.zeros((0, 3)) | |
for axis in [0, None]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) | |
assert_(len(w) == 1) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
for axis in [1]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_equal(np.nanmedian(mat, axis=axis), np.zeros([])) | |
assert_(len(w) == 0) | |
def test_scalar(self): | |
assert_(np.nanmedian(0.) == 0.) | |
def test_extended_axis_invalid(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_raises(np.AxisError, np.nanmedian, d, axis=-5) | |
assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5)) | |
assert_raises(np.AxisError, np.nanmedian, d, axis=4) | |
assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4)) | |
assert_raises(ValueError, np.nanmedian, d, axis=(1, 1)) | |
def test_float_special(self): | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning) | |
for inf in [np.inf, -np.inf]: | |
a = np.array([[inf, np.nan], [np.nan, np.nan]]) | |
assert_equal(np.nanmedian(a, axis=0), [inf, np.nan]) | |
assert_equal(np.nanmedian(a, axis=1), [inf, np.nan]) | |
assert_equal(np.nanmedian(a), inf) | |
# minimum fill value check | |
a = np.array([[np.nan, np.nan, inf], | |
[np.nan, np.nan, inf]]) | |
assert_equal(np.nanmedian(a), inf) | |
assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf]) | |
assert_equal(np.nanmedian(a, axis=1), inf) | |
# no mask path | |
a = np.array([[inf, inf], [inf, inf]]) | |
assert_equal(np.nanmedian(a, axis=1), inf) | |
a = np.array([[inf, 7, -inf, -9], | |
[-10, np.nan, np.nan, 5], | |
[4, np.nan, np.nan, inf]], | |
dtype=np.float32) | |
if inf > 0: | |
assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.]) | |
assert_equal(np.nanmedian(a), 4.5) | |
else: | |
assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.]) | |
assert_equal(np.nanmedian(a), -2.5) | |
assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf]) | |
for i in range(0, 10): | |
for j in range(1, 10): | |
a = np.array([([np.nan] * i) + ([inf] * j)] * 2) | |
assert_equal(np.nanmedian(a), inf) | |
assert_equal(np.nanmedian(a, axis=1), inf) | |
assert_equal(np.nanmedian(a, axis=0), | |
([np.nan] * i) + [inf] * j) | |
a = np.array([([np.nan] * i) + ([-inf] * j)] * 2) | |
assert_equal(np.nanmedian(a), -inf) | |
assert_equal(np.nanmedian(a, axis=1), -inf) | |
assert_equal(np.nanmedian(a, axis=0), | |
([np.nan] * i) + [-inf] * j) | |
class TestNanFunctions_Percentile: | |
def test_mutation(self): | |
# Check that passed array is not modified. | |
ndat = _ndat.copy() | |
np.nanpercentile(ndat, 30) | |
assert_equal(ndat, _ndat) | |
def test_keepdims(self): | |
mat = np.eye(3) | |
for axis in [None, 0, 1]: | |
tgt = np.percentile(mat, 70, axis=axis, out=None, | |
overwrite_input=False) | |
res = np.nanpercentile(mat, 70, axis=axis, out=None, | |
overwrite_input=False) | |
assert_(res.ndim == tgt.ndim) | |
d = np.ones((3, 5, 7, 11)) | |
# Randomly set some elements to NaN: | |
w = np.random.random((4, 200)) * np.array(d.shape)[:, None] | |
w = w.astype(np.intp) | |
d[tuple(w)] = np.nan | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning) | |
res = np.nanpercentile(d, 90, axis=None, keepdims=True) | |
assert_equal(res.shape, (1, 1, 1, 1)) | |
res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True) | |
assert_equal(res.shape, (1, 1, 7, 11)) | |
res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True) | |
assert_equal(res.shape, (1, 5, 7, 1)) | |
res = np.nanpercentile(d, 90, axis=(1,), keepdims=True) | |
assert_equal(res.shape, (3, 1, 7, 11)) | |
res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True) | |
assert_equal(res.shape, (1, 1, 1, 1)) | |
res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True) | |
assert_equal(res.shape, (1, 1, 7, 1)) | |
def test_out(self): | |
mat = np.random.rand(3, 3) | |
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) | |
resout = np.zeros(3) | |
tgt = np.percentile(mat, 42, axis=1) | |
res = np.nanpercentile(nan_mat, 42, axis=1, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
# 0-d output: | |
resout = np.zeros(()) | |
tgt = np.percentile(mat, 42, axis=None) | |
res = np.nanpercentile(nan_mat, 42, axis=None, out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout) | |
assert_almost_equal(res, resout) | |
assert_almost_equal(res, tgt) | |
def test_result_values(self): | |
tgt = [np.percentile(d, 28) for d in _rdat] | |
res = np.nanpercentile(_ndat, 28, axis=1) | |
assert_almost_equal(res, tgt) | |
# Transpose the array to fit the output convention of numpy.percentile | |
tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat]) | |
res = np.nanpercentile(_ndat, (28, 98), axis=1) | |
assert_almost_equal(res, tgt) | |
def test_allnans(self): | |
mat = np.array([np.nan]*9).reshape(3, 3) | |
for axis in [None, 0, 1]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all()) | |
if axis is None: | |
assert_(len(w) == 1) | |
else: | |
assert_(len(w) == 3) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
# Check scalar | |
assert_(np.isnan(np.nanpercentile(np.nan, 60))) | |
if axis is None: | |
assert_(len(w) == 2) | |
else: | |
assert_(len(w) == 4) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
def test_empty(self): | |
mat = np.zeros((0, 3)) | |
for axis in [0, None]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all()) | |
assert_(len(w) == 1) | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
for axis in [1]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([])) | |
assert_(len(w) == 0) | |
def test_scalar(self): | |
assert_equal(np.nanpercentile(0., 100), 0.) | |
a = np.arange(6) | |
r = np.nanpercentile(a, 50, axis=0) | |
assert_equal(r, 2.5) | |
assert_(np.isscalar(r)) | |
def test_extended_axis_invalid(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5) | |
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5)) | |
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=4) | |
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, 4)) | |
assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1)) | |
def test_multiple_percentiles(self): | |
perc = [50, 100] | |
mat = np.ones((4, 3)) | |
nan_mat = np.nan * mat | |
# For checking consistency in higher dimensional case | |
large_mat = np.ones((3, 4, 5)) | |
large_mat[:, 0:2:4, :] = 0 | |
large_mat[:, :, 3:] *= 2 | |
for axis in [None, 0, 1]: | |
for keepdim in [False, True]: | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, "All-NaN slice encountered") | |
val = np.percentile(mat, perc, axis=axis, keepdims=keepdim) | |
nan_val = np.nanpercentile(nan_mat, perc, axis=axis, | |
keepdims=keepdim) | |
assert_equal(nan_val.shape, val.shape) | |
val = np.percentile(large_mat, perc, axis=axis, | |
keepdims=keepdim) | |
nan_val = np.nanpercentile(large_mat, perc, axis=axis, | |
keepdims=keepdim) | |
assert_equal(nan_val, val) | |
megamat = np.ones((3, 4, 5, 6)) | |
assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6)) | |
class TestNanFunctions_Quantile: | |
# most of this is already tested by TestPercentile | |
def test_regression(self): | |
ar = np.arange(24).reshape(2, 3, 4).astype(float) | |
ar[0][1] = np.nan | |
assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) | |
assert_equal(np.nanquantile(ar, q=0.5, axis=0), | |
np.nanpercentile(ar, q=50, axis=0)) | |
assert_equal(np.nanquantile(ar, q=0.5, axis=1), | |
np.nanpercentile(ar, q=50, axis=1)) | |
assert_equal(np.nanquantile(ar, q=[0.5], axis=1), | |
np.nanpercentile(ar, q=[50], axis=1)) | |
assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), | |
np.nanpercentile(ar, q=[25, 50, 75], axis=1)) | |
def test_basic(self): | |
x = np.arange(8) * 0.5 | |
assert_equal(np.nanquantile(x, 0), 0.) | |
assert_equal(np.nanquantile(x, 1), 3.5) | |
assert_equal(np.nanquantile(x, 0.5), 1.75) | |
def test_no_p_overwrite(self): | |
# this is worth retesting, because quantile does not make a copy | |
p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) | |
p = p0.copy() | |
np.nanquantile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, p0) | |
p0 = p0.tolist() | |
p = p.tolist() | |
np.nanquantile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, p0) | |
def test__nan_mask(arr, expected): | |
for out in [None, np.empty(arr.shape, dtype=np.bool_)]: | |
actual = _nan_mask(arr, out=out) | |
assert_equal(actual, expected) | |
# the above won't distinguish between True proper | |
# and an array of True values; we want True proper | |
# for types that can't possibly contain NaN | |
if type(expected) is not np.ndarray: | |
assert actual is True | |
def test__replace_nan(): | |
""" Test that _replace_nan returns the original array if there are no | |
NaNs, not a copy. | |
""" | |
for dtype in [np.bool_, np.int32, np.int64]: | |
arr = np.array([0, 1], dtype=dtype) | |
result, mask = _replace_nan(arr, 0) | |
assert mask is None | |
# do not make a copy if there are no nans | |
assert result is arr | |
for dtype in [np.float32, np.float64]: | |
arr = np.array([0, 1], dtype=dtype) | |
result, mask = _replace_nan(arr, 2) | |
assert (mask == False).all() | |
# mask is not None, so we make a copy | |
assert result is not arr | |
assert_equal(result, arr) | |
arr_nan = np.array([0, 1, np.nan], dtype=dtype) | |
result_nan, mask_nan = _replace_nan(arr_nan, 2) | |
assert_equal(mask_nan, np.array([False, False, True])) | |
assert result_nan is not arr_nan | |
assert_equal(result_nan, np.array([0, 1, 2])) | |
assert np.isnan(arr_nan[-1]) | |