Spaces:
Running
Running
""" | |
A sub-package for efficiently dealing with polynomials. | |
Within the documentation for this sub-package, a "finite power series," | |
i.e., a polynomial (also referred to simply as a "series") is represented | |
by a 1-D numpy array of the polynomial's coefficients, ordered from lowest | |
order term to highest. For example, array([1,2,3]) represents | |
``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial | |
applicable to the specific module in question, e.g., `polynomial` (which | |
"wraps" the "standard" basis) or `chebyshev`. For optimal performance, | |
all operations on polynomials, including evaluation at an argument, are | |
implemented as operations on the coefficients. Additional (module-specific) | |
information can be found in the docstring for the module of interest. | |
This package provides *convenience classes* for each of six different kinds | |
of polynomials: | |
======================== ================ | |
**Name** **Provides** | |
======================== ================ | |
`~polynomial.Polynomial` Power series | |
`~chebyshev.Chebyshev` Chebyshev series | |
`~legendre.Legendre` Legendre series | |
`~laguerre.Laguerre` Laguerre series | |
`~hermite.Hermite` Hermite series | |
`~hermite_e.HermiteE` HermiteE series | |
======================== ================ | |
These *convenience classes* provide a consistent interface for creating, | |
manipulating, and fitting data with polynomials of different bases. | |
The convenience classes are the preferred interface for the `~numpy.polynomial` | |
package, and are available from the ``numpy.polynomial`` namespace. | |
This eliminates the need to navigate to the corresponding submodules, e.g. | |
``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of | |
``np.polynomial.polynomial.Polynomial`` or | |
``np.polynomial.chebyshev.Chebyshev``, respectively. | |
The classes provide a more consistent and concise interface than the | |
type-specific functions defined in the submodules for each type of polynomial. | |
For example, to fit a Chebyshev polynomial with degree ``1`` to data given | |
by arrays ``xdata`` and ``ydata``, the | |
`~chebyshev.Chebyshev.fit` class method:: | |
>>> from numpy.polynomial import Chebyshev | |
>>> c = Chebyshev.fit(xdata, ydata, deg=1) | |
is preferred over the `chebyshev.chebfit` function from the | |
``np.polynomial.chebyshev`` module:: | |
>>> from numpy.polynomial.chebyshev import chebfit | |
>>> c = chebfit(xdata, ydata, deg=1) | |
See :doc:`routines.polynomials.classes` for more details. | |
Convenience Classes | |
=================== | |
The following lists the various constants and methods common to all of | |
the classes representing the various kinds of polynomials. In the following, | |
the term ``Poly`` represents any one of the convenience classes (e.g. | |
`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.) | |
while the lowercase ``p`` represents an **instance** of a polynomial class. | |
Constants | |
--------- | |
- ``Poly.domain`` -- Default domain | |
- ``Poly.window`` -- Default window | |
- ``Poly.basis_name`` -- String used to represent the basis | |
- ``Poly.maxpower`` -- Maximum value ``n`` such that ``p**n`` is allowed | |
- ``Poly.nickname`` -- String used in printing | |
Creation | |
-------- | |
Methods for creating polynomial instances. | |
- ``Poly.basis(degree)`` -- Basis polynomial of given degree | |
- ``Poly.identity()`` -- ``p`` where ``p(x) = x`` for all ``x`` | |
- ``Poly.fit(x, y, deg)`` -- ``p`` of degree ``deg`` with coefficients | |
determined by the least-squares fit to the data ``x``, ``y`` | |
- ``Poly.fromroots(roots)`` -- ``p`` with specified roots | |
- ``p.copy()`` -- Create a copy of ``p`` | |
Conversion | |
---------- | |
Methods for converting a polynomial instance of one kind to another. | |
- ``p.cast(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` | |
- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map | |
between ``domain`` and ``window`` | |
Calculus | |
-------- | |
- ``p.deriv()`` -- Take the derivative of ``p`` | |
- ``p.integ()`` -- Integrate ``p`` | |
Validation | |
---------- | |
- ``Poly.has_samecoef(p1, p2)`` -- Check if coefficients match | |
- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match | |
- ``Poly.has_sametype(p1, p2)`` -- Check if types match | |
- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match | |
Misc | |
---- | |
- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain`` | |
- ``p.mapparms()`` -- Return the parameters for the linear mapping between | |
``domain`` and ``window``. | |
- ``p.roots()`` -- Return the roots of `p`. | |
- ``p.trim()`` -- Remove trailing coefficients. | |
- ``p.cutdeg(degree)`` -- Truncate p to given degree | |
- ``p.truncate(size)`` -- Truncate p to given size | |
""" | |
from .polynomial import Polynomial | |
from .chebyshev import Chebyshev | |
from .legendre import Legendre | |
from .hermite import Hermite | |
from .hermite_e import HermiteE | |
from .laguerre import Laguerre | |
__all__ = [ | |
"set_default_printstyle", | |
"polynomial", "Polynomial", | |
"chebyshev", "Chebyshev", | |
"legendre", "Legendre", | |
"hermite", "Hermite", | |
"hermite_e", "HermiteE", | |
"laguerre", "Laguerre", | |
] | |
def set_default_printstyle(style): | |
""" | |
Set the default format for the string representation of polynomials. | |
Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii' | |
or 'unicode'. | |
Parameters | |
---------- | |
style : str | |
Format string for default printing style. Must be either 'ascii' or | |
'unicode'. | |
Notes | |
----- | |
The default format depends on the platform: 'unicode' is used on | |
Unix-based systems and 'ascii' on Windows. This determination is based on | |
default font support for the unicode superscript and subscript ranges. | |
Examples | |
-------- | |
>>> p = np.polynomial.Polynomial([1, 2, 3]) | |
>>> c = np.polynomial.Chebyshev([1, 2, 3]) | |
>>> np.polynomial.set_default_printstyle('unicode') | |
>>> print(p) | |
1.0 + 2.0·x¹ + 3.0·x² | |
>>> print(c) | |
1.0 + 2.0·T₁(x) + 3.0·T₂(x) | |
>>> np.polynomial.set_default_printstyle('ascii') | |
>>> print(p) | |
1.0 + 2.0 x**1 + 3.0 x**2 | |
>>> print(c) | |
1.0 + 2.0 T_1(x) + 3.0 T_2(x) | |
>>> # Formatting supercedes all class/package-level defaults | |
>>> print(f"{p:unicode}") | |
1.0 + 2.0·x¹ + 3.0·x² | |
""" | |
if style not in ('unicode', 'ascii'): | |
raise ValueError( | |
f"Unsupported format string '{style}'. Valid options are 'ascii' " | |
f"and 'unicode'" | |
) | |
_use_unicode = True | |
if style == 'ascii': | |
_use_unicode = False | |
from ._polybase import ABCPolyBase | |
ABCPolyBase._use_unicode = _use_unicode | |
from numpy._pytesttester import PytestTester | |
test = PytestTester(__name__) | |
del PytestTester | |