diff --git "a/MLPY/Lib/site-packages/PIL/Image.py" "b/MLPY/Lib/site-packages/PIL/Image.py" new file mode 100644--- /dev/null +++ "b/MLPY/Lib/site-packages/PIL/Image.py" @@ -0,0 +1,4147 @@ +# +# The Python Imaging Library. +# $Id$ +# +# the Image class wrapper +# +# partial release history: +# 1995-09-09 fl Created +# 1996-03-11 fl PIL release 0.0 (proof of concept) +# 1996-04-30 fl PIL release 0.1b1 +# 1999-07-28 fl PIL release 1.0 final +# 2000-06-07 fl PIL release 1.1 +# 2000-10-20 fl PIL release 1.1.1 +# 2001-05-07 fl PIL release 1.1.2 +# 2002-03-15 fl PIL release 1.1.3 +# 2003-05-10 fl PIL release 1.1.4 +# 2005-03-28 fl PIL release 1.1.5 +# 2006-12-02 fl PIL release 1.1.6 +# 2009-11-15 fl PIL release 1.1.7 +# +# Copyright (c) 1997-2009 by Secret Labs AB. All rights reserved. +# Copyright (c) 1995-2009 by Fredrik Lundh. +# +# See the README file for information on usage and redistribution. +# + +from __future__ import annotations + +import abc +import atexit +import builtins +import io +import logging +import math +import os +import re +import struct +import sys +import tempfile +import warnings +from collections.abc import Callable, MutableMapping +from enum import IntEnum +from types import ModuleType +from typing import ( + IO, + TYPE_CHECKING, + Any, + Literal, + Protocol, + Sequence, + Tuple, + cast, +) + +# VERSION was removed in Pillow 6.0.0. +# PILLOW_VERSION was removed in Pillow 9.0.0. +# Use __version__ instead. +from . import ( + ExifTags, + ImageMode, + TiffTags, + UnidentifiedImageError, + __version__, + _plugins, +) +from ._binary import i32le, o32be, o32le +from ._deprecate import deprecate +from ._typing import StrOrBytesPath, TypeGuard +from ._util import DeferredError, is_path + +ElementTree: ModuleType | None +try: + from defusedxml import ElementTree +except ImportError: + ElementTree = None + +logger = logging.getLogger(__name__) + + +class DecompressionBombWarning(RuntimeWarning): + pass + + +class DecompressionBombError(Exception): + pass + + +WARN_POSSIBLE_FORMATS: bool = False + +# Limit to around a quarter gigabyte for a 24-bit (3 bpp) image +MAX_IMAGE_PIXELS: int | None = int(1024 * 1024 * 1024 // 4 // 3) + + +try: + # If the _imaging C module is not present, Pillow will not load. + # Note that other modules should not refer to _imaging directly; + # import Image and use the Image.core variable instead. + # Also note that Image.core is not a publicly documented interface, + # and should be considered private and subject to change. + from . import _imaging as core + + if __version__ != getattr(core, "PILLOW_VERSION", None): + msg = ( + "The _imaging extension was built for another version of Pillow or PIL:\n" + f"Core version: {getattr(core, 'PILLOW_VERSION', None)}\n" + f"Pillow version: {__version__}" + ) + raise ImportError(msg) + +except ImportError as v: + core = DeferredError.new(ImportError("The _imaging C module is not installed.")) + # Explanations for ways that we know we might have an import error + if str(v).startswith("Module use of python"): + # The _imaging C module is present, but not compiled for + # the right version (windows only). Print a warning, if + # possible. + warnings.warn( + "The _imaging extension was built for another version of Python.", + RuntimeWarning, + ) + elif str(v).startswith("The _imaging extension"): + warnings.warn(str(v), RuntimeWarning) + # Fail here anyway. Don't let people run with a mostly broken Pillow. + # see docs/porting.rst + raise + + +USE_CFFI_ACCESS = False +cffi: ModuleType | None +try: + import cffi +except ImportError: + cffi = None + + +def isImageType(t: Any) -> TypeGuard[Image]: + """ + Checks if an object is an image object. + + .. warning:: + + This function is for internal use only. + + :param t: object to check if it's an image + :returns: True if the object is an image + """ + return hasattr(t, "im") + + +# +# Constants + + +# transpose +class Transpose(IntEnum): + FLIP_LEFT_RIGHT = 0 + FLIP_TOP_BOTTOM = 1 + ROTATE_90 = 2 + ROTATE_180 = 3 + ROTATE_270 = 4 + TRANSPOSE = 5 + TRANSVERSE = 6 + + +# transforms (also defined in Imaging.h) +class Transform(IntEnum): + AFFINE = 0 + EXTENT = 1 + PERSPECTIVE = 2 + QUAD = 3 + MESH = 4 + + +# resampling filters (also defined in Imaging.h) +class Resampling(IntEnum): + NEAREST = 0 + BOX = 4 + BILINEAR = 2 + HAMMING = 5 + BICUBIC = 3 + LANCZOS = 1 + + +_filters_support = { + Resampling.BOX: 0.5, + Resampling.BILINEAR: 1.0, + Resampling.HAMMING: 1.0, + Resampling.BICUBIC: 2.0, + Resampling.LANCZOS: 3.0, +} + + +# dithers +class Dither(IntEnum): + NONE = 0 + ORDERED = 1 # Not yet implemented + RASTERIZE = 2 # Not yet implemented + FLOYDSTEINBERG = 3 # default + + +# palettes/quantizers +class Palette(IntEnum): + WEB = 0 + ADAPTIVE = 1 + + +class Quantize(IntEnum): + MEDIANCUT = 0 + MAXCOVERAGE = 1 + FASTOCTREE = 2 + LIBIMAGEQUANT = 3 + + +module = sys.modules[__name__] +for enum in (Transpose, Transform, Resampling, Dither, Palette, Quantize): + for item in enum: + setattr(module, item.name, item.value) + + +if hasattr(core, "DEFAULT_STRATEGY"): + DEFAULT_STRATEGY = core.DEFAULT_STRATEGY + FILTERED = core.FILTERED + HUFFMAN_ONLY = core.HUFFMAN_ONLY + RLE = core.RLE + FIXED = core.FIXED + + +# -------------------------------------------------------------------- +# Registries + +if TYPE_CHECKING: + from . import ImageFile, PyAccess +ID: list[str] = [] +OPEN: dict[ + str, + tuple[ + Callable[[IO[bytes], str | bytes], ImageFile.ImageFile], + Callable[[bytes], bool | str] | None, + ], +] = {} +MIME: dict[str, str] = {} +SAVE: dict[str, Callable[[Image, IO[bytes], str | bytes], None]] = {} +SAVE_ALL: dict[str, Callable[[Image, IO[bytes], str | bytes], None]] = {} +EXTENSION: dict[str, str] = {} +DECODERS: dict[str, type[ImageFile.PyDecoder]] = {} +ENCODERS: dict[str, type[ImageFile.PyEncoder]] = {} + +# -------------------------------------------------------------------- +# Modes + +_ENDIAN = "<" if sys.byteorder == "little" else ">" + + +def _conv_type_shape(im): + m = ImageMode.getmode(im.mode) + shape = (im.height, im.width) + extra = len(m.bands) + if extra != 1: + shape += (extra,) + return shape, m.typestr + + +MODES = [ + "1", + "CMYK", + "F", + "HSV", + "I", + "I;16", + "I;16B", + "I;16L", + "I;16N", + "L", + "LA", + "La", + "LAB", + "P", + "PA", + "RGB", + "RGBA", + "RGBa", + "RGBX", + "YCbCr", +] + +# raw modes that may be memory mapped. NOTE: if you change this, you +# may have to modify the stride calculation in map.c too! +_MAPMODES = ("L", "P", "RGBX", "RGBA", "CMYK", "I;16", "I;16L", "I;16B") + + +def getmodebase(mode: str) -> str: + """ + Gets the "base" mode for given mode. This function returns "L" for + images that contain grayscale data, and "RGB" for images that + contain color data. + + :param mode: Input mode. + :returns: "L" or "RGB". + :exception KeyError: If the input mode was not a standard mode. + """ + return ImageMode.getmode(mode).basemode + + +def getmodetype(mode: str) -> str: + """ + Gets the storage type mode. Given a mode, this function returns a + single-layer mode suitable for storing individual bands. + + :param mode: Input mode. + :returns: "L", "I", or "F". + :exception KeyError: If the input mode was not a standard mode. + """ + return ImageMode.getmode(mode).basetype + + +def getmodebandnames(mode: str) -> tuple[str, ...]: + """ + Gets a list of individual band names. Given a mode, this function returns + a tuple containing the names of individual bands (use + :py:method:`~PIL.Image.getmodetype` to get the mode used to store each + individual band. + + :param mode: Input mode. + :returns: A tuple containing band names. The length of the tuple + gives the number of bands in an image of the given mode. + :exception KeyError: If the input mode was not a standard mode. + """ + return ImageMode.getmode(mode).bands + + +def getmodebands(mode: str) -> int: + """ + Gets the number of individual bands for this mode. + + :param mode: Input mode. + :returns: The number of bands in this mode. + :exception KeyError: If the input mode was not a standard mode. + """ + return len(ImageMode.getmode(mode).bands) + + +# -------------------------------------------------------------------- +# Helpers + +_initialized = 0 + + +def preinit() -> None: + """ + Explicitly loads BMP, GIF, JPEG, PPM and PPM file format drivers. + + It is called when opening or saving images. + """ + + global _initialized + if _initialized >= 1: + return + + try: + from . import BmpImagePlugin + + assert BmpImagePlugin + except ImportError: + pass + try: + from . import GifImagePlugin + + assert GifImagePlugin + except ImportError: + pass + try: + from . import JpegImagePlugin + + assert JpegImagePlugin + except ImportError: + pass + try: + from . import PpmImagePlugin + + assert PpmImagePlugin + except ImportError: + pass + try: + from . import PngImagePlugin + + assert PngImagePlugin + except ImportError: + pass + + _initialized = 1 + + +def init() -> bool: + """ + Explicitly initializes the Python Imaging Library. This function + loads all available file format drivers. + + It is called when opening or saving images if :py:meth:`~preinit()` is + insufficient, and by :py:meth:`~PIL.features.pilinfo`. + """ + + global _initialized + if _initialized >= 2: + return False + + parent_name = __name__.rpartition(".")[0] + for plugin in _plugins: + try: + logger.debug("Importing %s", plugin) + __import__(f"{parent_name}.{plugin}", globals(), locals(), []) + except ImportError as e: + logger.debug("Image: failed to import %s: %s", plugin, e) + + if OPEN or SAVE: + _initialized = 2 + return True + return False + + +# -------------------------------------------------------------------- +# Codec factories (used by tobytes/frombytes and ImageFile.load) + + +def _getdecoder( + mode: str, decoder_name: str, args: Any, extra: tuple[Any, ...] = () +) -> core.ImagingDecoder | ImageFile.PyDecoder: + # tweak arguments + if args is None: + args = () + elif not isinstance(args, tuple): + args = (args,) + + try: + decoder = DECODERS[decoder_name] + except KeyError: + pass + else: + return decoder(mode, *args + extra) + + try: + # get decoder + decoder = getattr(core, f"{decoder_name}_decoder") + except AttributeError as e: + msg = f"decoder {decoder_name} not available" + raise OSError(msg) from e + return decoder(mode, *args + extra) + + +def _getencoder( + mode: str, encoder_name: str, args: Any, extra: tuple[Any, ...] = () +) -> core.ImagingEncoder | ImageFile.PyEncoder: + # tweak arguments + if args is None: + args = () + elif not isinstance(args, tuple): + args = (args,) + + try: + encoder = ENCODERS[encoder_name] + except KeyError: + pass + else: + return encoder(mode, *args + extra) + + try: + # get encoder + encoder = getattr(core, f"{encoder_name}_encoder") + except AttributeError as e: + msg = f"encoder {encoder_name} not available" + raise OSError(msg) from e + return encoder(mode, *args + extra) + + +# -------------------------------------------------------------------- +# Simple expression analyzer + + +class _E: + def __init__(self, scale, offset) -> None: + self.scale = scale + self.offset = offset + + def __neg__(self): + return _E(-self.scale, -self.offset) + + def __add__(self, other): + if isinstance(other, _E): + return _E(self.scale + other.scale, self.offset + other.offset) + return _E(self.scale, self.offset + other) + + __radd__ = __add__ + + def __sub__(self, other): + return self + -other + + def __rsub__(self, other): + return other + -self + + def __mul__(self, other): + if isinstance(other, _E): + return NotImplemented + return _E(self.scale * other, self.offset * other) + + __rmul__ = __mul__ + + def __truediv__(self, other): + if isinstance(other, _E): + return NotImplemented + return _E(self.scale / other, self.offset / other) + + +def _getscaleoffset(expr): + a = expr(_E(1, 0)) + return (a.scale, a.offset) if isinstance(a, _E) else (0, a) + + +# -------------------------------------------------------------------- +# Implementation wrapper + + +class SupportsGetData(Protocol): + def getdata( + self, + ) -> tuple[Transform, Sequence[int]]: ... + + +class Image: + """ + This class represents an image object. To create + :py:class:`~PIL.Image.Image` objects, use the appropriate factory + functions. There's hardly ever any reason to call the Image constructor + directly. + + * :py:func:`~PIL.Image.open` + * :py:func:`~PIL.Image.new` + * :py:func:`~PIL.Image.frombytes` + """ + + format: str | None = None + format_description: str | None = None + _close_exclusive_fp_after_loading = True + + def __init__(self): + # FIXME: take "new" parameters / other image? + # FIXME: turn mode and size into delegating properties? + self.im = None + self._mode = "" + self._size = (0, 0) + self.palette = None + self.info = {} + self.readonly = 0 + self.pyaccess = None + self._exif = None + + @property + def width(self) -> int: + return self.size[0] + + @property + def height(self) -> int: + return self.size[1] + + @property + def size(self) -> tuple[int, int]: + return self._size + + @property + def mode(self) -> str: + return self._mode + + def _new(self, im: core.ImagingCore) -> Image: + new = Image() + new.im = im + new._mode = im.mode + new._size = im.size + if im.mode in ("P", "PA"): + if self.palette: + new.palette = self.palette.copy() + else: + from . import ImagePalette + + new.palette = ImagePalette.ImagePalette() + new.info = self.info.copy() + return new + + # Context manager support + def __enter__(self): + return self + + def _close_fp(self): + if getattr(self, "_fp", False): + if self._fp != self.fp: + self._fp.close() + self._fp = DeferredError(ValueError("Operation on closed image")) + if self.fp: + self.fp.close() + + def __exit__(self, *args): + if hasattr(self, "fp"): + if getattr(self, "_exclusive_fp", False): + self._close_fp() + self.fp = None + + def close(self) -> None: + """ + Closes the file pointer, if possible. + + This operation will destroy the image core and release its memory. + The image data will be unusable afterward. + + This function is required to close images that have multiple frames or + have not had their file read and closed by the + :py:meth:`~PIL.Image.Image.load` method. See :ref:`file-handling` for + more information. + """ + if hasattr(self, "fp"): + try: + self._close_fp() + self.fp = None + except Exception as msg: + logger.debug("Error closing: %s", msg) + + if getattr(self, "map", None): + self.map = None + + # Instead of simply setting to None, we're setting up a + # deferred error that will better explain that the core image + # object is gone. + self.im = DeferredError(ValueError("Operation on closed image")) + + def _copy(self) -> None: + self.load() + self.im = self.im.copy() + self.pyaccess = None + self.readonly = 0 + + def _ensure_mutable(self) -> None: + if self.readonly: + self._copy() + else: + self.load() + + def _dump( + self, file: str | None = None, format: str | None = None, **options: Any + ) -> str: + suffix = "" + if format: + suffix = f".{format}" + + if not file: + f, filename = tempfile.mkstemp(suffix) + os.close(f) + else: + filename = file + if not filename.endswith(suffix): + filename = filename + suffix + + self.load() + + if not format or format == "PPM": + self.im.save_ppm(filename) + else: + self.save(filename, format, **options) + + return filename + + def __eq__(self, other: object) -> bool: + if self.__class__ is not other.__class__: + return False + assert isinstance(other, Image) + return ( + self.mode == other.mode + and self.size == other.size + and self.info == other.info + and self.getpalette() == other.getpalette() + and self.tobytes() == other.tobytes() + ) + + def __repr__(self) -> str: + return "<%s.%s image mode=%s size=%dx%d at 0x%X>" % ( + self.__class__.__module__, + self.__class__.__name__, + self.mode, + self.size[0], + self.size[1], + id(self), + ) + + def _repr_pretty_(self, p, cycle) -> None: + """IPython plain text display support""" + + # Same as __repr__ but without unpredictable id(self), + # to keep Jupyter notebook `text/plain` output stable. + p.text( + "<%s.%s image mode=%s size=%dx%d>" + % ( + self.__class__.__module__, + self.__class__.__name__, + self.mode, + self.size[0], + self.size[1], + ) + ) + + def _repr_image(self, image_format: str, **kwargs: Any) -> bytes | None: + """Helper function for iPython display hook. + + :param image_format: Image format. + :returns: image as bytes, saved into the given format. + """ + b = io.BytesIO() + try: + self.save(b, image_format, **kwargs) + except Exception: + return None + return b.getvalue() + + def _repr_png_(self) -> bytes | None: + """iPython display hook support for PNG format. + + :returns: PNG version of the image as bytes + """ + return self._repr_image("PNG", compress_level=1) + + def _repr_jpeg_(self) -> bytes | None: + """iPython display hook support for JPEG format. + + :returns: JPEG version of the image as bytes + """ + return self._repr_image("JPEG") + + @property + def __array_interface__(self): + # numpy array interface support + new = {"version": 3} + try: + if self.mode == "1": + # Binary images need to be extended from bits to bytes + # See: https://github.com/python-pillow/Pillow/issues/350 + new["data"] = self.tobytes("raw", "L") + else: + new["data"] = self.tobytes() + except Exception as e: + if not isinstance(e, (MemoryError, RecursionError)): + try: + import numpy + from packaging.version import parse as parse_version + except ImportError: + pass + else: + if parse_version(numpy.__version__) < parse_version("1.23"): + warnings.warn(str(e)) + raise + new["shape"], new["typestr"] = _conv_type_shape(self) + return new + + def __getstate__(self): + im_data = self.tobytes() # load image first + return [self.info, self.mode, self.size, self.getpalette(), im_data] + + def __setstate__(self, state) -> None: + Image.__init__(self) + info, mode, size, palette, data = state + self.info = info + self._mode = mode + self._size = size + self.im = core.new(mode, size) + if mode in ("L", "LA", "P", "PA") and palette: + self.putpalette(palette) + self.frombytes(data) + + def tobytes(self, encoder_name: str = "raw", *args: Any) -> bytes: + """ + Return image as a bytes object. + + .. warning:: + + This method returns the raw image data from the internal + storage. For compressed image data (e.g. PNG, JPEG) use + :meth:`~.save`, with a BytesIO parameter for in-memory + data. + + :param encoder_name: What encoder to use. The default is to + use the standard "raw" encoder. + + A list of C encoders can be seen under + codecs section of the function array in + :file:`_imaging.c`. Python encoders are + registered within the relevant plugins. + :param args: Extra arguments to the encoder. + :returns: A :py:class:`bytes` object. + """ + + encoder_args: Any = args + if len(encoder_args) == 1 and isinstance(encoder_args[0], tuple): + # may pass tuple instead of argument list + encoder_args = encoder_args[0] + + if encoder_name == "raw" and encoder_args == (): + encoder_args = self.mode + + self.load() + + if self.width == 0 or self.height == 0: + return b"" + + # unpack data + e = _getencoder(self.mode, encoder_name, encoder_args) + e.setimage(self.im) + + bufsize = max(65536, self.size[0] * 4) # see RawEncode.c + + output = [] + while True: + bytes_consumed, errcode, data = e.encode(bufsize) + output.append(data) + if errcode: + break + if errcode < 0: + msg = f"encoder error {errcode} in tobytes" + raise RuntimeError(msg) + + return b"".join(output) + + def tobitmap(self, name: str = "image") -> bytes: + """ + Returns the image converted to an X11 bitmap. + + .. note:: This method only works for mode "1" images. + + :param name: The name prefix to use for the bitmap variables. + :returns: A string containing an X11 bitmap. + :raises ValueError: If the mode is not "1" + """ + + self.load() + if self.mode != "1": + msg = "not a bitmap" + raise ValueError(msg) + data = self.tobytes("xbm") + return b"".join( + [ + f"#define {name}_width {self.size[0]}\n".encode("ascii"), + f"#define {name}_height {self.size[1]}\n".encode("ascii"), + f"static char {name}_bits[] = {{\n".encode("ascii"), + data, + b"};", + ] + ) + + def frombytes( + self, data: bytes | bytearray, decoder_name: str = "raw", *args: Any + ) -> None: + """ + Loads this image with pixel data from a bytes object. + + This method is similar to the :py:func:`~PIL.Image.frombytes` function, + but loads data into this image instead of creating a new image object. + """ + + if self.width == 0 or self.height == 0: + return + + decoder_args: Any = args + if len(decoder_args) == 1 and isinstance(decoder_args[0], tuple): + # may pass tuple instead of argument list + decoder_args = decoder_args[0] + + # default format + if decoder_name == "raw" and decoder_args == (): + decoder_args = self.mode + + # unpack data + d = _getdecoder(self.mode, decoder_name, decoder_args) + d.setimage(self.im) + s = d.decode(data) + + if s[0] >= 0: + msg = "not enough image data" + raise ValueError(msg) + if s[1] != 0: + msg = "cannot decode image data" + raise ValueError(msg) + + def load(self) -> core.PixelAccess | PyAccess.PyAccess | None: + """ + Allocates storage for the image and loads the pixel data. In + normal cases, you don't need to call this method, since the + Image class automatically loads an opened image when it is + accessed for the first time. + + If the file associated with the image was opened by Pillow, then this + method will close it. The exception to this is if the image has + multiple frames, in which case the file will be left open for seek + operations. See :ref:`file-handling` for more information. + + :returns: An image access object. + :rtype: :py:class:`.PixelAccess` or :py:class:`.PyAccess` + """ + if self.im is not None and self.palette and self.palette.dirty: + # realize palette + mode, arr = self.palette.getdata() + self.im.putpalette(self.palette.mode, mode, arr) + self.palette.dirty = 0 + self.palette.rawmode = None + if "transparency" in self.info and mode in ("LA", "PA"): + if isinstance(self.info["transparency"], int): + self.im.putpalettealpha(self.info["transparency"], 0) + else: + self.im.putpalettealphas(self.info["transparency"]) + self.palette.mode = "RGBA" + else: + self.palette.palette = self.im.getpalette( + self.palette.mode, self.palette.mode + ) + + if self.im is not None: + if cffi and USE_CFFI_ACCESS: + if self.pyaccess: + return self.pyaccess + from . import PyAccess + + self.pyaccess = PyAccess.new(self, self.readonly) + if self.pyaccess: + return self.pyaccess + return self.im.pixel_access(self.readonly) + return None + + def verify(self) -> None: + """ + Verifies the contents of a file. For data read from a file, this + method attempts to determine if the file is broken, without + actually decoding the image data. If this method finds any + problems, it raises suitable exceptions. If you need to load + the image after using this method, you must reopen the image + file. + """ + pass + + def convert( + self, + mode: str | None = None, + matrix: tuple[float, ...] | None = None, + dither: Dither | None = None, + palette: Palette = Palette.WEB, + colors: int = 256, + ) -> Image: + """ + Returns a converted copy of this image. For the "P" mode, this + method translates pixels through the palette. If mode is + omitted, a mode is chosen so that all information in the image + and the palette can be represented without a palette. + + This supports all possible conversions between "L", "RGB" and "CMYK". The + ``matrix`` argument only supports "L" and "RGB". + + When translating a color image to grayscale (mode "L"), + the library uses the ITU-R 601-2 luma transform:: + + L = R * 299/1000 + G * 587/1000 + B * 114/1000 + + The default method of converting a grayscale ("L") or "RGB" + image into a bilevel (mode "1") image uses Floyd-Steinberg + dither to approximate the original image luminosity levels. If + dither is ``None``, all values larger than 127 are set to 255 (white), + all other values to 0 (black). To use other thresholds, use the + :py:meth:`~PIL.Image.Image.point` method. + + When converting from "RGBA" to "P" without a ``matrix`` argument, + this passes the operation to :py:meth:`~PIL.Image.Image.quantize`, + and ``dither`` and ``palette`` are ignored. + + When converting from "PA", if an "RGBA" palette is present, the alpha + channel from the image will be used instead of the values from the palette. + + :param mode: The requested mode. See: :ref:`concept-modes`. + :param matrix: An optional conversion matrix. If given, this + should be 4- or 12-tuple containing floating point values. + :param dither: Dithering method, used when converting from + mode "RGB" to "P" or from "RGB" or "L" to "1". + Available methods are :data:`Dither.NONE` or :data:`Dither.FLOYDSTEINBERG` + (default). Note that this is not used when ``matrix`` is supplied. + :param palette: Palette to use when converting from mode "RGB" + to "P". Available palettes are :data:`Palette.WEB` or + :data:`Palette.ADAPTIVE`. + :param colors: Number of colors to use for the :data:`Palette.ADAPTIVE` + palette. Defaults to 256. + :rtype: :py:class:`~PIL.Image.Image` + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + if mode in ("BGR;15", "BGR;16", "BGR;24"): + deprecate(mode, 12) + + self.load() + + has_transparency = "transparency" in self.info + if not mode and self.mode == "P": + # determine default mode + if self.palette: + mode = self.palette.mode + else: + mode = "RGB" + if mode == "RGB" and has_transparency: + mode = "RGBA" + if not mode or (mode == self.mode and not matrix): + return self.copy() + + if matrix: + # matrix conversion + if mode not in ("L", "RGB"): + msg = "illegal conversion" + raise ValueError(msg) + im = self.im.convert_matrix(mode, matrix) + new_im = self._new(im) + if has_transparency and self.im.bands == 3: + transparency = new_im.info["transparency"] + + def convert_transparency( + m: tuple[float, ...], v: tuple[int, int, int] + ) -> int: + value = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3] * 0.5 + return max(0, min(255, int(value))) + + if mode == "L": + transparency = convert_transparency(matrix, transparency) + elif len(mode) == 3: + transparency = tuple( + convert_transparency(matrix[i * 4 : i * 4 + 4], transparency) + for i in range(0, len(transparency)) + ) + new_im.info["transparency"] = transparency + return new_im + + if mode == "P" and self.mode == "RGBA": + return self.quantize(colors) + + trns = None + delete_trns = False + # transparency handling + if has_transparency: + if (self.mode in ("1", "L", "I", "I;16") and mode in ("LA", "RGBA")) or ( + self.mode == "RGB" and mode in ("La", "LA", "RGBa", "RGBA") + ): + # Use transparent conversion to promote from transparent + # color to an alpha channel. + new_im = self._new( + self.im.convert_transparent(mode, self.info["transparency"]) + ) + del new_im.info["transparency"] + return new_im + elif self.mode in ("L", "RGB", "P") and mode in ("L", "RGB", "P"): + t = self.info["transparency"] + if isinstance(t, bytes): + # Dragons. This can't be represented by a single color + warnings.warn( + "Palette images with Transparency expressed in bytes should be " + "converted to RGBA images" + ) + delete_trns = True + else: + # get the new transparency color. + # use existing conversions + trns_im = new(self.mode, (1, 1)) + if self.mode == "P": + trns_im.putpalette(self.palette) + if isinstance(t, tuple): + err = "Couldn't allocate a palette color for transparency" + try: + t = trns_im.palette.getcolor(t, self) + except ValueError as e: + if str(e) == "cannot allocate more than 256 colors": + # If all 256 colors are in use, + # then there is no need for transparency + t = None + else: + raise ValueError(err) from e + if t is None: + trns = None + else: + trns_im.putpixel((0, 0), t) + + if mode in ("L", "RGB"): + trns_im = trns_im.convert(mode) + else: + # can't just retrieve the palette number, got to do it + # after quantization. + trns_im = trns_im.convert("RGB") + trns = trns_im.getpixel((0, 0)) + + elif self.mode == "P" and mode in ("LA", "PA", "RGBA"): + t = self.info["transparency"] + delete_trns = True + + if isinstance(t, bytes): + self.im.putpalettealphas(t) + elif isinstance(t, int): + self.im.putpalettealpha(t, 0) + else: + msg = "Transparency for P mode should be bytes or int" + raise ValueError(msg) + + if mode == "P" and palette == Palette.ADAPTIVE: + im = self.im.quantize(colors) + new_im = self._new(im) + from . import ImagePalette + + new_im.palette = ImagePalette.ImagePalette( + "RGB", new_im.im.getpalette("RGB") + ) + if delete_trns: + # This could possibly happen if we requantize to fewer colors. + # The transparency would be totally off in that case. + del new_im.info["transparency"] + if trns is not None: + try: + new_im.info["transparency"] = new_im.palette.getcolor( + cast(Tuple[int, ...], trns), # trns was converted to RGB + new_im, + ) + except Exception: + # if we can't make a transparent color, don't leave the old + # transparency hanging around to mess us up. + del new_im.info["transparency"] + warnings.warn("Couldn't allocate palette entry for transparency") + return new_im + + if "LAB" in (self.mode, mode): + other_mode = mode if self.mode == "LAB" else self.mode + if other_mode in ("RGB", "RGBA", "RGBX"): + from . import ImageCms + + srgb = ImageCms.createProfile("sRGB") + lab = ImageCms.createProfile("LAB") + profiles = [lab, srgb] if self.mode == "LAB" else [srgb, lab] + transform = ImageCms.buildTransform( + profiles[0], profiles[1], self.mode, mode + ) + return transform.apply(self) + + # colorspace conversion + if dither is None: + dither = Dither.FLOYDSTEINBERG + + try: + im = self.im.convert(mode, dither) + except ValueError: + try: + # normalize source image and try again + modebase = getmodebase(self.mode) + if modebase == self.mode: + raise + im = self.im.convert(modebase) + im = im.convert(mode, dither) + except KeyError as e: + msg = "illegal conversion" + raise ValueError(msg) from e + + new_im = self._new(im) + if mode == "P" and palette != Palette.ADAPTIVE: + from . import ImagePalette + + new_im.palette = ImagePalette.ImagePalette("RGB", im.getpalette("RGB")) + if delete_trns: + # crash fail if we leave a bytes transparency in an rgb/l mode. + del new_im.info["transparency"] + if trns is not None: + if new_im.mode == "P" and new_im.palette: + try: + new_im.info["transparency"] = new_im.palette.getcolor(trns, new_im) + except ValueError as e: + del new_im.info["transparency"] + if str(e) != "cannot allocate more than 256 colors": + # If all 256 colors are in use, + # then there is no need for transparency + warnings.warn( + "Couldn't allocate palette entry for transparency" + ) + else: + new_im.info["transparency"] = trns + return new_im + + def quantize( + self, + colors: int = 256, + method: int | None = None, + kmeans: int = 0, + palette=None, + dither: Dither = Dither.FLOYDSTEINBERG, + ) -> Image: + """ + Convert the image to 'P' mode with the specified number + of colors. + + :param colors: The desired number of colors, <= 256 + :param method: :data:`Quantize.MEDIANCUT` (median cut), + :data:`Quantize.MAXCOVERAGE` (maximum coverage), + :data:`Quantize.FASTOCTREE` (fast octree), + :data:`Quantize.LIBIMAGEQUANT` (libimagequant; check support + using :py:func:`PIL.features.check_feature` with + ``feature="libimagequant"``). + + By default, :data:`Quantize.MEDIANCUT` will be used. + + The exception to this is RGBA images. :data:`Quantize.MEDIANCUT` + and :data:`Quantize.MAXCOVERAGE` do not support RGBA images, so + :data:`Quantize.FASTOCTREE` is used by default instead. + :param kmeans: Integer greater than or equal to zero. + :param palette: Quantize to the palette of given + :py:class:`PIL.Image.Image`. + :param dither: Dithering method, used when converting from + mode "RGB" to "P" or from "RGB" or "L" to "1". + Available methods are :data:`Dither.NONE` or :data:`Dither.FLOYDSTEINBERG` + (default). + :returns: A new image + """ + + self.load() + + if method is None: + # defaults: + method = Quantize.MEDIANCUT + if self.mode == "RGBA": + method = Quantize.FASTOCTREE + + if self.mode == "RGBA" and method not in ( + Quantize.FASTOCTREE, + Quantize.LIBIMAGEQUANT, + ): + # Caller specified an invalid mode. + msg = ( + "Fast Octree (method == 2) and libimagequant (method == 3) " + "are the only valid methods for quantizing RGBA images" + ) + raise ValueError(msg) + + if palette: + # use palette from reference image + palette.load() + if palette.mode != "P": + msg = "bad mode for palette image" + raise ValueError(msg) + if self.mode not in {"RGB", "L"}: + msg = "only RGB or L mode images can be quantized to a palette" + raise ValueError(msg) + im = self.im.convert("P", dither, palette.im) + new_im = self._new(im) + new_im.palette = palette.palette.copy() + return new_im + + if kmeans < 0: + msg = "kmeans must not be negative" + raise ValueError(msg) + + im = self._new(self.im.quantize(colors, method, kmeans)) + + from . import ImagePalette + + mode = im.im.getpalettemode() + palette = im.im.getpalette(mode, mode)[: colors * len(mode)] + im.palette = ImagePalette.ImagePalette(mode, palette) + + return im + + def copy(self) -> Image: + """ + Copies this image. Use this method if you wish to paste things + into an image, but still retain the original. + + :rtype: :py:class:`~PIL.Image.Image` + :returns: An :py:class:`~PIL.Image.Image` object. + """ + self.load() + return self._new(self.im.copy()) + + __copy__ = copy + + def crop(self, box: tuple[float, float, float, float] | None = None) -> Image: + """ + Returns a rectangular region from this image. The box is a + 4-tuple defining the left, upper, right, and lower pixel + coordinate. See :ref:`coordinate-system`. + + Note: Prior to Pillow 3.4.0, this was a lazy operation. + + :param box: The crop rectangle, as a (left, upper, right, lower)-tuple. + :rtype: :py:class:`~PIL.Image.Image` + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + if box is None: + return self.copy() + + if box[2] < box[0]: + msg = "Coordinate 'right' is less than 'left'" + raise ValueError(msg) + elif box[3] < box[1]: + msg = "Coordinate 'lower' is less than 'upper'" + raise ValueError(msg) + + self.load() + return self._new(self._crop(self.im, box)) + + def _crop( + self, im: core.ImagingCore, box: tuple[float, float, float, float] + ) -> core.ImagingCore: + """ + Returns a rectangular region from the core image object im. + + This is equivalent to calling im.crop((x0, y0, x1, y1)), but + includes additional sanity checks. + + :param im: a core image object + :param box: The crop rectangle, as a (left, upper, right, lower)-tuple. + :returns: A core image object. + """ + + x0, y0, x1, y1 = map(int, map(round, box)) + + absolute_values = (abs(x1 - x0), abs(y1 - y0)) + + _decompression_bomb_check(absolute_values) + + return im.crop((x0, y0, x1, y1)) + + def draft( + self, mode: str | None, size: tuple[int, int] | None + ) -> tuple[str, tuple[int, int, float, float]] | None: + """ + Configures the image file loader so it returns a version of the + image that as closely as possible matches the given mode and + size. For example, you can use this method to convert a color + JPEG to grayscale while loading it. + + If any changes are made, returns a tuple with the chosen ``mode`` and + ``box`` with coordinates of the original image within the altered one. + + Note that this method modifies the :py:class:`~PIL.Image.Image` object + in place. If the image has already been loaded, this method has no + effect. + + Note: This method is not implemented for most images. It is + currently implemented only for JPEG and MPO images. + + :param mode: The requested mode. + :param size: The requested size in pixels, as a 2-tuple: + (width, height). + """ + pass + + def _expand(self, xmargin: int, ymargin: int | None = None) -> Image: + if ymargin is None: + ymargin = xmargin + self.load() + return self._new(self.im.expand(xmargin, ymargin)) + + if TYPE_CHECKING: + from . import ImageFilter + + def filter(self, filter: ImageFilter.Filter | type[ImageFilter.Filter]) -> Image: + """ + Filters this image using the given filter. For a list of + available filters, see the :py:mod:`~PIL.ImageFilter` module. + + :param filter: Filter kernel. + :returns: An :py:class:`~PIL.Image.Image` object.""" + + from . import ImageFilter + + self.load() + + if callable(filter): + filter = filter() + if not hasattr(filter, "filter"): + msg = "filter argument should be ImageFilter.Filter instance or class" + raise TypeError(msg) + + multiband = isinstance(filter, ImageFilter.MultibandFilter) + if self.im.bands == 1 or multiband: + return self._new(filter.filter(self.im)) + + ims = [ + self._new(filter.filter(self.im.getband(c))) for c in range(self.im.bands) + ] + return merge(self.mode, ims) + + def getbands(self) -> tuple[str, ...]: + """ + Returns a tuple containing the name of each band in this image. + For example, ``getbands`` on an RGB image returns ("R", "G", "B"). + + :returns: A tuple containing band names. + :rtype: tuple + """ + return ImageMode.getmode(self.mode).bands + + def getbbox(self, *, alpha_only: bool = True) -> tuple[int, int, int, int] | None: + """ + Calculates the bounding box of the non-zero regions in the + image. + + :param alpha_only: Optional flag, defaulting to ``True``. + If ``True`` and the image has an alpha channel, trim transparent pixels. + Otherwise, trim pixels when all channels are zero. + Keyword-only argument. + :returns: The bounding box is returned as a 4-tuple defining the + left, upper, right, and lower pixel coordinate. See + :ref:`coordinate-system`. If the image is completely empty, this + method returns None. + + """ + + self.load() + return self.im.getbbox(alpha_only) + + def getcolors(self, maxcolors: int = 256): + """ + Returns a list of colors used in this image. + + The colors will be in the image's mode. For example, an RGB image will + return a tuple of (red, green, blue) color values, and a P image will + return the index of the color in the palette. + + :param maxcolors: Maximum number of colors. If this number is + exceeded, this method returns None. The default limit is + 256 colors. + :returns: An unsorted list of (count, pixel) values. + """ + + self.load() + if self.mode in ("1", "L", "P"): + h = self.im.histogram() + out = [(h[i], i) for i in range(256) if h[i]] + if len(out) > maxcolors: + return None + return out + return self.im.getcolors(maxcolors) + + def getdata(self, band: int | None = None): + """ + Returns the contents of this image as a sequence object + containing pixel values. The sequence object is flattened, so + that values for line one follow directly after the values of + line zero, and so on. + + Note that the sequence object returned by this method is an + internal PIL data type, which only supports certain sequence + operations. To convert it to an ordinary sequence (e.g. for + printing), use ``list(im.getdata())``. + + :param band: What band to return. The default is to return + all bands. To return a single band, pass in the index + value (e.g. 0 to get the "R" band from an "RGB" image). + :returns: A sequence-like object. + """ + + self.load() + if band is not None: + return self.im.getband(band) + return self.im # could be abused + + def getextrema(self) -> tuple[float, float] | tuple[tuple[int, int], ...]: + """ + Gets the minimum and maximum pixel values for each band in + the image. + + :returns: For a single-band image, a 2-tuple containing the + minimum and maximum pixel value. For a multi-band image, + a tuple containing one 2-tuple for each band. + """ + + self.load() + if self.im.bands > 1: + return tuple(self.im.getband(i).getextrema() for i in range(self.im.bands)) + return self.im.getextrema() + + def getxmp(self): + """ + Returns a dictionary containing the XMP tags. + Requires defusedxml to be installed. + + :returns: XMP tags in a dictionary. + """ + + def get_name(tag: str) -> str: + return re.sub("^{[^}]+}", "", tag) + + def get_value(element): + value = {get_name(k): v for k, v in element.attrib.items()} + children = list(element) + if children: + for child in children: + name = get_name(child.tag) + child_value = get_value(child) + if name in value: + if not isinstance(value[name], list): + value[name] = [value[name]] + value[name].append(child_value) + else: + value[name] = child_value + elif value: + if element.text: + value["text"] = element.text + else: + return element.text + return value + + if ElementTree is None: + warnings.warn("XMP data cannot be read without defusedxml dependency") + return {} + if "xmp" not in self.info: + return {} + root = ElementTree.fromstring(self.info["xmp"].rstrip(b"\x00")) + return {get_name(root.tag): get_value(root)} + + def getexif(self) -> Exif: + """ + Gets EXIF data from the image. + + :returns: an :py:class:`~PIL.Image.Exif` object. + """ + if self._exif is None: + self._exif = Exif() + elif self._exif._loaded: + return self._exif + self._exif._loaded = True + + exif_info = self.info.get("exif") + if exif_info is None: + if "Raw profile type exif" in self.info: + exif_info = bytes.fromhex( + "".join(self.info["Raw profile type exif"].split("\n")[3:]) + ) + elif hasattr(self, "tag_v2"): + self._exif.bigtiff = self.tag_v2._bigtiff + self._exif.endian = self.tag_v2._endian + self._exif.load_from_fp(self.fp, self.tag_v2._offset) + if exif_info is not None: + self._exif.load(exif_info) + + # XMP tags + if ExifTags.Base.Orientation not in self._exif: + xmp_tags = self.info.get("XML:com.adobe.xmp") + if xmp_tags: + match = re.search(r'tiff:Orientation(="|>)([0-9])', xmp_tags) + if match: + self._exif[ExifTags.Base.Orientation] = int(match[2]) + + return self._exif + + def _reload_exif(self) -> None: + if self._exif is None or not self._exif._loaded: + return + self._exif._loaded = False + self.getexif() + + def get_child_images(self) -> list[ImageFile.ImageFile]: + child_images = [] + exif = self.getexif() + ifds = [] + if ExifTags.Base.SubIFDs in exif: + subifd_offsets = exif[ExifTags.Base.SubIFDs] + if subifd_offsets: + if not isinstance(subifd_offsets, tuple): + subifd_offsets = (subifd_offsets,) + for subifd_offset in subifd_offsets: + ifds.append((exif._get_ifd_dict(subifd_offset), subifd_offset)) + ifd1 = exif.get_ifd(ExifTags.IFD.IFD1) + if ifd1 and ifd1.get(513): + ifds.append((ifd1, exif._info.next)) + + offset = None + for ifd, ifd_offset in ifds: + current_offset = self.fp.tell() + if offset is None: + offset = current_offset + + fp = self.fp + thumbnail_offset = ifd.get(513) + if thumbnail_offset is not None: + thumbnail_offset += getattr(self, "_exif_offset", 0) + self.fp.seek(thumbnail_offset) + data = self.fp.read(ifd.get(514)) + fp = io.BytesIO(data) + + with open(fp) as im: + from . import TiffImagePlugin + + if thumbnail_offset is None and isinstance( + im, TiffImagePlugin.TiffImageFile + ): + im._frame_pos = [ifd_offset] + im._seek(0) + im.load() + child_images.append(im) + + if offset is not None: + self.fp.seek(offset) + return child_images + + def getim(self): + """ + Returns a capsule that points to the internal image memory. + + :returns: A capsule object. + """ + + self.load() + return self.im.ptr + + def getpalette(self, rawmode: str | None = "RGB") -> list[int] | None: + """ + Returns the image palette as a list. + + :param rawmode: The mode in which to return the palette. ``None`` will + return the palette in its current mode. + + .. versionadded:: 9.1.0 + + :returns: A list of color values [r, g, b, ...], or None if the + image has no palette. + """ + + self.load() + try: + mode = self.im.getpalettemode() + except ValueError: + return None # no palette + if rawmode is None: + rawmode = mode + return list(self.im.getpalette(mode, rawmode)) + + @property + def has_transparency_data(self) -> bool: + """ + Determine if an image has transparency data, whether in the form of an + alpha channel, a palette with an alpha channel, or a "transparency" key + in the info dictionary. + + Note the image might still appear solid, if all of the values shown + within are opaque. + + :returns: A boolean. + """ + return ( + self.mode in ("LA", "La", "PA", "RGBA", "RGBa") + or (self.mode == "P" and self.palette.mode.endswith("A")) + or "transparency" in self.info + ) + + def apply_transparency(self) -> None: + """ + If a P mode image has a "transparency" key in the info dictionary, + remove the key and instead apply the transparency to the palette. + Otherwise, the image is unchanged. + """ + if self.mode != "P" or "transparency" not in self.info: + return + + from . import ImagePalette + + palette = self.getpalette("RGBA") + assert palette is not None + transparency = self.info["transparency"] + if isinstance(transparency, bytes): + for i, alpha in enumerate(transparency): + palette[i * 4 + 3] = alpha + else: + palette[transparency * 4 + 3] = 0 + self.palette = ImagePalette.ImagePalette("RGBA", bytes(palette)) + self.palette.dirty = 1 + + del self.info["transparency"] + + def getpixel( + self, xy: tuple[int, int] | list[int] + ) -> float | tuple[int, ...] | None: + """ + Returns the pixel value at a given position. + + :param xy: The coordinate, given as (x, y). See + :ref:`coordinate-system`. + :returns: The pixel value. If the image is a multi-layer image, + this method returns a tuple. + """ + + self.load() + if self.pyaccess: + return self.pyaccess.getpixel(xy) + return self.im.getpixel(tuple(xy)) + + def getprojection(self) -> tuple[list[int], list[int]]: + """ + Get projection to x and y axes + + :returns: Two sequences, indicating where there are non-zero + pixels along the X-axis and the Y-axis, respectively. + """ + + self.load() + x, y = self.im.getprojection() + return list(x), list(y) + + def histogram(self, mask: Image | None = None, extrema=None) -> list[int]: + """ + Returns a histogram for the image. The histogram is returned as a + list of pixel counts, one for each pixel value in the source + image. Counts are grouped into 256 bins for each band, even if + the image has more than 8 bits per band. If the image has more + than one band, the histograms for all bands are concatenated (for + example, the histogram for an "RGB" image contains 768 values). + + A bilevel image (mode "1") is treated as a grayscale ("L") image + by this method. + + If a mask is provided, the method returns a histogram for those + parts of the image where the mask image is non-zero. The mask + image must have the same size as the image, and be either a + bi-level image (mode "1") or a grayscale image ("L"). + + :param mask: An optional mask. + :param extrema: An optional tuple of manually-specified extrema. + :returns: A list containing pixel counts. + """ + self.load() + if mask: + mask.load() + return self.im.histogram((0, 0), mask.im) + if self.mode in ("I", "F"): + if extrema is None: + extrema = self.getextrema() + return self.im.histogram(extrema) + return self.im.histogram() + + def entropy(self, mask=None, extrema=None): + """ + Calculates and returns the entropy for the image. + + A bilevel image (mode "1") is treated as a grayscale ("L") + image by this method. + + If a mask is provided, the method employs the histogram for + those parts of the image where the mask image is non-zero. + The mask image must have the same size as the image, and be + either a bi-level image (mode "1") or a grayscale image ("L"). + + :param mask: An optional mask. + :param extrema: An optional tuple of manually-specified extrema. + :returns: A float value representing the image entropy + """ + self.load() + if mask: + mask.load() + return self.im.entropy((0, 0), mask.im) + if self.mode in ("I", "F"): + if extrema is None: + extrema = self.getextrema() + return self.im.entropy(extrema) + return self.im.entropy() + + def paste( + self, + im: Image | str | float | tuple[float, ...], + box: Image | tuple[int, int, int, int] | tuple[int, int] | None = None, + mask: Image | None = None, + ) -> None: + """ + Pastes another image into this image. The box argument is either + a 2-tuple giving the upper left corner, a 4-tuple defining the + left, upper, right, and lower pixel coordinate, or None (same as + (0, 0)). See :ref:`coordinate-system`. If a 4-tuple is given, the size + of the pasted image must match the size of the region. + + If the modes don't match, the pasted image is converted to the mode of + this image (see the :py:meth:`~PIL.Image.Image.convert` method for + details). + + Instead of an image, the source can be a integer or tuple + containing pixel values. The method then fills the region + with the given color. When creating RGB images, you can + also use color strings as supported by the ImageColor module. + + If a mask is given, this method updates only the regions + indicated by the mask. You can use either "1", "L", "LA", "RGBA" + or "RGBa" images (if present, the alpha band is used as mask). + Where the mask is 255, the given image is copied as is. Where + the mask is 0, the current value is preserved. Intermediate + values will mix the two images together, including their alpha + channels if they have them. + + See :py:meth:`~PIL.Image.Image.alpha_composite` if you want to + combine images with respect to their alpha channels. + + :param im: Source image or pixel value (integer, float or tuple). + :param box: An optional 4-tuple giving the region to paste into. + If a 2-tuple is used instead, it's treated as the upper left + corner. If omitted or None, the source is pasted into the + upper left corner. + + If an image is given as the second argument and there is no + third, the box defaults to (0, 0), and the second argument + is interpreted as a mask image. + :param mask: An optional mask image. + """ + + if isImageType(box): + if mask is not None: + msg = "If using second argument as mask, third argument must be None" + raise ValueError(msg) + # abbreviated paste(im, mask) syntax + mask = box + box = None + assert not isinstance(box, Image) + + if box is None: + box = (0, 0) + + if len(box) == 2: + # upper left corner given; get size from image or mask + if isImageType(im): + size = im.size + elif isImageType(mask): + size = mask.size + else: + # FIXME: use self.size here? + msg = "cannot determine region size; use 4-item box" + raise ValueError(msg) + box += (box[0] + size[0], box[1] + size[1]) + + if isinstance(im, str): + from . import ImageColor + + im = ImageColor.getcolor(im, self.mode) + + elif isImageType(im): + im.load() + if self.mode != im.mode: + if self.mode != "RGB" or im.mode not in ("LA", "RGBA", "RGBa"): + # should use an adapter for this! + im = im.convert(self.mode) + im = im.im + + self._ensure_mutable() + + if mask: + mask.load() + self.im.paste(im, box, mask.im) + else: + self.im.paste(im, box) + + def alpha_composite( + self, im: Image, dest: Sequence[int] = (0, 0), source: Sequence[int] = (0, 0) + ) -> None: + """'In-place' analog of Image.alpha_composite. Composites an image + onto this image. + + :param im: image to composite over this one + :param dest: Optional 2 tuple (left, top) specifying the upper + left corner in this (destination) image. + :param source: Optional 2 (left, top) tuple for the upper left + corner in the overlay source image, or 4 tuple (left, top, right, + bottom) for the bounds of the source rectangle + + Performance Note: Not currently implemented in-place in the core layer. + """ + + if not isinstance(source, (list, tuple)): + msg = "Source must be a list or tuple" + raise ValueError(msg) + if not isinstance(dest, (list, tuple)): + msg = "Destination must be a list or tuple" + raise ValueError(msg) + + if len(source) == 4: + overlay_crop_box = tuple(source) + elif len(source) == 2: + overlay_crop_box = tuple(source) + im.size + else: + msg = "Source must be a sequence of length 2 or 4" + raise ValueError(msg) + + if not len(dest) == 2: + msg = "Destination must be a sequence of length 2" + raise ValueError(msg) + if min(source) < 0: + msg = "Source must be non-negative" + raise ValueError(msg) + + # over image, crop if it's not the whole image. + if overlay_crop_box == (0, 0) + im.size: + overlay = im + else: + overlay = im.crop(overlay_crop_box) + + # target for the paste + box = tuple(dest) + (dest[0] + overlay.width, dest[1] + overlay.height) + + # destination image. don't copy if we're using the whole image. + if box == (0, 0) + self.size: + background = self + else: + background = self.crop(box) + + result = alpha_composite(background, overlay) + self.paste(result, box) + + def point( + self, + lut: Sequence[float] | Callable[[int], float] | ImagePointHandler, + mode: str | None = None, + ) -> Image: + """ + Maps this image through a lookup table or function. + + :param lut: A lookup table, containing 256 (or 65536 if + self.mode=="I" and mode == "L") values per band in the + image. A function can be used instead, it should take a + single argument. The function is called once for each + possible pixel value, and the resulting table is applied to + all bands of the image. + + It may also be an :py:class:`~PIL.Image.ImagePointHandler` + object:: + + class Example(Image.ImagePointHandler): + def point(self, data): + # Return result + :param mode: Output mode (default is same as input). This can only be used if + the source image has mode "L" or "P", and the output has mode "1" or the + source image mode is "I" and the output mode is "L". + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + self.load() + + if isinstance(lut, ImagePointHandler): + return lut.point(self) + + if callable(lut): + # if it isn't a list, it should be a function + if self.mode in ("I", "I;16", "F"): + # check if the function can be used with point_transform + # UNDONE wiredfool -- I think this prevents us from ever doing + # a gamma function point transform on > 8bit images. + scale, offset = _getscaleoffset(lut) + return self._new(self.im.point_transform(scale, offset)) + # for other modes, convert the function to a table + flatLut = [lut(i) for i in range(256)] * self.im.bands + else: + flatLut = lut + + if self.mode == "F": + # FIXME: _imaging returns a confusing error message for this case + msg = "point operation not supported for this mode" + raise ValueError(msg) + + if mode != "F": + flatLut = [round(i) for i in flatLut] + return self._new(self.im.point(flatLut, mode)) + + def putalpha(self, alpha: Image | int) -> None: + """ + Adds or replaces the alpha layer in this image. If the image + does not have an alpha layer, it's converted to "LA" or "RGBA". + The new layer must be either "L" or "1". + + :param alpha: The new alpha layer. This can either be an "L" or "1" + image having the same size as this image, or an integer. + """ + + self._ensure_mutable() + + if self.mode not in ("LA", "PA", "RGBA"): + # attempt to promote self to a matching alpha mode + try: + mode = getmodebase(self.mode) + "A" + try: + self.im.setmode(mode) + except (AttributeError, ValueError) as e: + # do things the hard way + im = self.im.convert(mode) + if im.mode not in ("LA", "PA", "RGBA"): + msg = "alpha channel could not be added" + raise ValueError(msg) from e # sanity check + self.im = im + self.pyaccess = None + self._mode = self.im.mode + except KeyError as e: + msg = "illegal image mode" + raise ValueError(msg) from e + + if self.mode in ("LA", "PA"): + band = 1 + else: + band = 3 + + if isImageType(alpha): + # alpha layer + if alpha.mode not in ("1", "L"): + msg = "illegal image mode" + raise ValueError(msg) + alpha.load() + if alpha.mode == "1": + alpha = alpha.convert("L") + else: + # constant alpha + alpha = cast(int, alpha) # see python/typing#1013 + try: + self.im.fillband(band, alpha) + except (AttributeError, ValueError): + # do things the hard way + alpha = new("L", self.size, alpha) + else: + return + + self.im.putband(alpha.im, band) + + def putdata( + self, + data: Sequence[float] | Sequence[Sequence[int]], + scale: float = 1.0, + offset: float = 0.0, + ) -> None: + """ + Copies pixel data from a flattened sequence object into the image. The + values should start at the upper left corner (0, 0), continue to the + end of the line, followed directly by the first value of the second + line, and so on. Data will be read until either the image or the + sequence ends. The scale and offset values are used to adjust the + sequence values: **pixel = value*scale + offset**. + + :param data: A flattened sequence object. + :param scale: An optional scale value. The default is 1.0. + :param offset: An optional offset value. The default is 0.0. + """ + + self._ensure_mutable() + + self.im.putdata(data, scale, offset) + + def putpalette(self, data, rawmode="RGB") -> None: + """ + Attaches a palette to this image. The image must be a "P", "PA", "L" + or "LA" image. + + The palette sequence must contain at most 256 colors, made up of one + integer value for each channel in the raw mode. + For example, if the raw mode is "RGB", then it can contain at most 768 + values, made up of red, green and blue values for the corresponding pixel + index in the 256 colors. + If the raw mode is "RGBA", then it can contain at most 1024 values, + containing red, green, blue and alpha values. + + Alternatively, an 8-bit string may be used instead of an integer sequence. + + :param data: A palette sequence (either a list or a string). + :param rawmode: The raw mode of the palette. Either "RGB", "RGBA", or a mode + that can be transformed to "RGB" or "RGBA" (e.g. "R", "BGR;15", "RGBA;L"). + """ + from . import ImagePalette + + if self.mode not in ("L", "LA", "P", "PA"): + msg = "illegal image mode" + raise ValueError(msg) + if isinstance(data, ImagePalette.ImagePalette): + palette = ImagePalette.raw(data.rawmode, data.palette) + else: + if not isinstance(data, bytes): + data = bytes(data) + palette = ImagePalette.raw(rawmode, data) + self._mode = "PA" if "A" in self.mode else "P" + self.palette = palette + self.palette.mode = "RGBA" if "A" in rawmode else "RGB" + self.load() # install new palette + + def putpixel( + self, xy: tuple[int, int], value: float | tuple[int, ...] | list[int] + ) -> None: + """ + Modifies the pixel at the given position. The color is given as + a single numerical value for single-band images, and a tuple for + multi-band images. In addition to this, RGB and RGBA tuples are + accepted for P and PA images. + + Note that this method is relatively slow. For more extensive changes, + use :py:meth:`~PIL.Image.Image.paste` or the :py:mod:`~PIL.ImageDraw` + module instead. + + See: + + * :py:meth:`~PIL.Image.Image.paste` + * :py:meth:`~PIL.Image.Image.putdata` + * :py:mod:`~PIL.ImageDraw` + + :param xy: The pixel coordinate, given as (x, y). See + :ref:`coordinate-system`. + :param value: The pixel value. + """ + + if self.readonly: + self._copy() + self.load() + + if self.pyaccess: + return self.pyaccess.putpixel(xy, value) + + if ( + self.mode in ("P", "PA") + and isinstance(value, (list, tuple)) + and len(value) in [3, 4] + ): + # RGB or RGBA value for a P or PA image + if self.mode == "PA": + alpha = value[3] if len(value) == 4 else 255 + value = value[:3] + palette_index = self.palette.getcolor(value, self) + value = (palette_index, alpha) if self.mode == "PA" else palette_index + return self.im.putpixel(xy, value) + + def remap_palette(self, dest_map, source_palette=None): + """ + Rewrites the image to reorder the palette. + + :param dest_map: A list of indexes into the original palette. + e.g. ``[1,0]`` would swap a two item palette, and ``list(range(256))`` + is the identity transform. + :param source_palette: Bytes or None. + :returns: An :py:class:`~PIL.Image.Image` object. + + """ + from . import ImagePalette + + if self.mode not in ("L", "P"): + msg = "illegal image mode" + raise ValueError(msg) + + bands = 3 + palette_mode = "RGB" + if source_palette is None: + if self.mode == "P": + self.load() + palette_mode = self.im.getpalettemode() + if palette_mode == "RGBA": + bands = 4 + source_palette = self.im.getpalette(palette_mode, palette_mode) + else: # L-mode + source_palette = bytearray(i // 3 for i in range(768)) + + palette_bytes = b"" + new_positions = [0] * 256 + + # pick only the used colors from the palette + for i, oldPosition in enumerate(dest_map): + palette_bytes += source_palette[ + oldPosition * bands : oldPosition * bands + bands + ] + new_positions[oldPosition] = i + + # replace the palette color id of all pixel with the new id + + # Palette images are [0..255], mapped through a 1 or 3 + # byte/color map. We need to remap the whole image + # from palette 1 to palette 2. New_positions is + # an array of indexes into palette 1. Palette 2 is + # palette 1 with any holes removed. + + # We're going to leverage the convert mechanism to use the + # C code to remap the image from palette 1 to palette 2, + # by forcing the source image into 'L' mode and adding a + # mapping 'L' mode palette, then converting back to 'L' + # sans palette thus converting the image bytes, then + # assigning the optimized RGB palette. + + # perf reference, 9500x4000 gif, w/~135 colors + # 14 sec prepatch, 1 sec postpatch with optimization forced. + + mapping_palette = bytearray(new_positions) + + m_im = self.copy() + m_im._mode = "P" + + m_im.palette = ImagePalette.ImagePalette( + palette_mode, palette=mapping_palette * bands + ) + # possibly set palette dirty, then + # m_im.putpalette(mapping_palette, 'L') # converts to 'P' + # or just force it. + # UNDONE -- this is part of the general issue with palettes + m_im.im.putpalette(palette_mode, palette_mode + ";L", m_im.palette.tobytes()) + + m_im = m_im.convert("L") + + m_im.putpalette(palette_bytes, palette_mode) + m_im.palette = ImagePalette.ImagePalette(palette_mode, palette=palette_bytes) + + if "transparency" in self.info: + try: + m_im.info["transparency"] = dest_map.index(self.info["transparency"]) + except ValueError: + if "transparency" in m_im.info: + del m_im.info["transparency"] + + return m_im + + def _get_safe_box(self, size, resample, box): + """Expands the box so it includes adjacent pixels + that may be used by resampling with the given resampling filter. + """ + filter_support = _filters_support[resample] - 0.5 + scale_x = (box[2] - box[0]) / size[0] + scale_y = (box[3] - box[1]) / size[1] + support_x = filter_support * scale_x + support_y = filter_support * scale_y + + return ( + max(0, int(box[0] - support_x)), + max(0, int(box[1] - support_y)), + min(self.size[0], math.ceil(box[2] + support_x)), + min(self.size[1], math.ceil(box[3] + support_y)), + ) + + def resize( + self, + size: tuple[int, int], + resample: int | None = None, + box: tuple[float, float, float, float] | None = None, + reducing_gap: float | None = None, + ) -> Image: + """ + Returns a resized copy of this image. + + :param size: The requested size in pixels, as a 2-tuple: + (width, height). + :param resample: An optional resampling filter. This can be + one of :py:data:`Resampling.NEAREST`, :py:data:`Resampling.BOX`, + :py:data:`Resampling.BILINEAR`, :py:data:`Resampling.HAMMING`, + :py:data:`Resampling.BICUBIC` or :py:data:`Resampling.LANCZOS`. + If the image has mode "1" or "P", it is always set to + :py:data:`Resampling.NEAREST`. If the image mode specifies a number + of bits, such as "I;16", then the default filter is + :py:data:`Resampling.NEAREST`. Otherwise, the default filter is + :py:data:`Resampling.BICUBIC`. See: :ref:`concept-filters`. + :param box: An optional 4-tuple of floats providing + the source image region to be scaled. + The values must be within (0, 0, width, height) rectangle. + If omitted or None, the entire source is used. + :param reducing_gap: Apply optimization by resizing the image + in two steps. First, reducing the image by integer times + using :py:meth:`~PIL.Image.Image.reduce`. + Second, resizing using regular resampling. The last step + changes size no less than by ``reducing_gap`` times. + ``reducing_gap`` may be None (no first step is performed) + or should be greater than 1.0. The bigger ``reducing_gap``, + the closer the result to the fair resampling. + The smaller ``reducing_gap``, the faster resizing. + With ``reducing_gap`` greater or equal to 3.0, the result is + indistinguishable from fair resampling in most cases. + The default value is None (no optimization). + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + if resample is None: + type_special = ";" in self.mode + resample = Resampling.NEAREST if type_special else Resampling.BICUBIC + elif resample not in ( + Resampling.NEAREST, + Resampling.BILINEAR, + Resampling.BICUBIC, + Resampling.LANCZOS, + Resampling.BOX, + Resampling.HAMMING, + ): + msg = f"Unknown resampling filter ({resample})." + + filters = [ + f"{filter[1]} ({filter[0]})" + for filter in ( + (Resampling.NEAREST, "Image.Resampling.NEAREST"), + (Resampling.LANCZOS, "Image.Resampling.LANCZOS"), + (Resampling.BILINEAR, "Image.Resampling.BILINEAR"), + (Resampling.BICUBIC, "Image.Resampling.BICUBIC"), + (Resampling.BOX, "Image.Resampling.BOX"), + (Resampling.HAMMING, "Image.Resampling.HAMMING"), + ) + ] + msg += f" Use {', '.join(filters[:-1])} or {filters[-1]}" + raise ValueError(msg) + + if reducing_gap is not None and reducing_gap < 1.0: + msg = "reducing_gap must be 1.0 or greater" + raise ValueError(msg) + + self.load() + if box is None: + box = (0, 0) + self.size + + if self.size == size and box == (0, 0) + self.size: + return self.copy() + + if self.mode in ("1", "P"): + resample = Resampling.NEAREST + + if self.mode in ["LA", "RGBA"] and resample != Resampling.NEAREST: + im = self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode]) + im = im.resize(size, resample, box) + return im.convert(self.mode) + + self.load() + + if reducing_gap is not None and resample != Resampling.NEAREST: + factor_x = int((box[2] - box[0]) / size[0] / reducing_gap) or 1 + factor_y = int((box[3] - box[1]) / size[1] / reducing_gap) or 1 + if factor_x > 1 or factor_y > 1: + reduce_box = self._get_safe_box(size, resample, box) + factor = (factor_x, factor_y) + self = ( + self.reduce(factor, box=reduce_box) + if callable(self.reduce) + else Image.reduce(self, factor, box=reduce_box) + ) + box = ( + (box[0] - reduce_box[0]) / factor_x, + (box[1] - reduce_box[1]) / factor_y, + (box[2] - reduce_box[0]) / factor_x, + (box[3] - reduce_box[1]) / factor_y, + ) + + return self._new(self.im.resize(size, resample, box)) + + def reduce( + self, + factor: int | tuple[int, int], + box: tuple[int, int, int, int] | None = None, + ) -> Image: + """ + Returns a copy of the image reduced ``factor`` times. + If the size of the image is not dividable by ``factor``, + the resulting size will be rounded up. + + :param factor: A greater than 0 integer or tuple of two integers + for width and height separately. + :param box: An optional 4-tuple of ints providing + the source image region to be reduced. + The values must be within ``(0, 0, width, height)`` rectangle. + If omitted or ``None``, the entire source is used. + """ + if not isinstance(factor, (list, tuple)): + factor = (factor, factor) + + if box is None: + box = (0, 0) + self.size + + if factor == (1, 1) and box == (0, 0) + self.size: + return self.copy() + + if self.mode in ["LA", "RGBA"]: + im = self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode]) + im = im.reduce(factor, box) + return im.convert(self.mode) + + self.load() + + return self._new(self.im.reduce(factor, box)) + + def rotate( + self, + angle: float, + resample: Resampling = Resampling.NEAREST, + expand: int | bool = False, + center: tuple[float, float] | None = None, + translate: tuple[int, int] | None = None, + fillcolor: float | tuple[float, ...] | str | None = None, + ) -> Image: + """ + Returns a rotated copy of this image. This method returns a + copy of this image, rotated the given number of degrees counter + clockwise around its centre. + + :param angle: In degrees counter clockwise. + :param resample: An optional resampling filter. This can be + one of :py:data:`Resampling.NEAREST` (use nearest neighbour), + :py:data:`Resampling.BILINEAR` (linear interpolation in a 2x2 + environment), or :py:data:`Resampling.BICUBIC` (cubic spline + interpolation in a 4x4 environment). If omitted, or if the image has + mode "1" or "P", it is set to :py:data:`Resampling.NEAREST`. + See :ref:`concept-filters`. + :param expand: Optional expansion flag. If true, expands the output + image to make it large enough to hold the entire rotated image. + If false or omitted, make the output image the same size as the + input image. Note that the expand flag assumes rotation around + the center and no translation. + :param center: Optional center of rotation (a 2-tuple). Origin is + the upper left corner. Default is the center of the image. + :param translate: An optional post-rotate translation (a 2-tuple). + :param fillcolor: An optional color for area outside the rotated image. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + angle = angle % 360.0 + + # Fast paths regardless of filter, as long as we're not + # translating or changing the center. + if not (center or translate): + if angle == 0: + return self.copy() + if angle == 180: + return self.transpose(Transpose.ROTATE_180) + if angle in (90, 270) and (expand or self.width == self.height): + return self.transpose( + Transpose.ROTATE_90 if angle == 90 else Transpose.ROTATE_270 + ) + + # Calculate the affine matrix. Note that this is the reverse + # transformation (from destination image to source) because we + # want to interpolate the (discrete) destination pixel from + # the local area around the (floating) source pixel. + + # The matrix we actually want (note that it operates from the right): + # (1, 0, tx) (1, 0, cx) ( cos a, sin a, 0) (1, 0, -cx) + # (0, 1, ty) * (0, 1, cy) * (-sin a, cos a, 0) * (0, 1, -cy) + # (0, 0, 1) (0, 0, 1) ( 0, 0, 1) (0, 0, 1) + + # The reverse matrix is thus: + # (1, 0, cx) ( cos -a, sin -a, 0) (1, 0, -cx) (1, 0, -tx) + # (0, 1, cy) * (-sin -a, cos -a, 0) * (0, 1, -cy) * (0, 1, -ty) + # (0, 0, 1) ( 0, 0, 1) (0, 0, 1) (0, 0, 1) + + # In any case, the final translation may be updated at the end to + # compensate for the expand flag. + + w, h = self.size + + if translate is None: + post_trans = (0, 0) + else: + post_trans = translate + if center is None: + center = (w / 2, h / 2) + + angle = -math.radians(angle) + matrix = [ + round(math.cos(angle), 15), + round(math.sin(angle), 15), + 0.0, + round(-math.sin(angle), 15), + round(math.cos(angle), 15), + 0.0, + ] + + def transform(x, y, matrix): + (a, b, c, d, e, f) = matrix + return a * x + b * y + c, d * x + e * y + f + + matrix[2], matrix[5] = transform( + -center[0] - post_trans[0], -center[1] - post_trans[1], matrix + ) + matrix[2] += center[0] + matrix[5] += center[1] + + if expand: + # calculate output size + xx = [] + yy = [] + for x, y in ((0, 0), (w, 0), (w, h), (0, h)): + x, y = transform(x, y, matrix) + xx.append(x) + yy.append(y) + nw = math.ceil(max(xx)) - math.floor(min(xx)) + nh = math.ceil(max(yy)) - math.floor(min(yy)) + + # We multiply a translation matrix from the right. Because of its + # special form, this is the same as taking the image of the + # translation vector as new translation vector. + matrix[2], matrix[5] = transform(-(nw - w) / 2.0, -(nh - h) / 2.0, matrix) + w, h = nw, nh + + return self.transform( + (w, h), Transform.AFFINE, matrix, resample, fillcolor=fillcolor + ) + + def save( + self, fp: StrOrBytesPath | IO[bytes], format: str | None = None, **params: Any + ) -> None: + """ + Saves this image under the given filename. If no format is + specified, the format to use is determined from the filename + extension, if possible. + + Keyword options can be used to provide additional instructions + to the writer. If a writer doesn't recognise an option, it is + silently ignored. The available options are described in the + :doc:`image format documentation + <../handbook/image-file-formats>` for each writer. + + You can use a file object instead of a filename. In this case, + you must always specify the format. The file object must + implement the ``seek``, ``tell``, and ``write`` + methods, and be opened in binary mode. + + :param fp: A filename (string), os.PathLike object or file object. + :param format: Optional format override. If omitted, the + format to use is determined from the filename extension. + If a file object was used instead of a filename, this + parameter should always be used. + :param params: Extra parameters to the image writer. + :returns: None + :exception ValueError: If the output format could not be determined + from the file name. Use the format option to solve this. + :exception OSError: If the file could not be written. The file + may have been created, and may contain partial data. + """ + + filename: str | bytes = "" + open_fp = False + if is_path(fp): + filename = os.path.realpath(os.fspath(fp)) + open_fp = True + elif fp == sys.stdout: + try: + fp = sys.stdout.buffer + except AttributeError: + pass + if not filename and hasattr(fp, "name") and is_path(fp.name): + # only set the name for metadata purposes + filename = os.path.realpath(os.fspath(fp.name)) + + # may mutate self! + self._ensure_mutable() + + save_all = params.pop("save_all", False) + self.encoderinfo = params + self.encoderconfig: tuple[Any, ...] = () + + preinit() + + filename_ext = os.path.splitext(filename)[1].lower() + ext = filename_ext.decode() if isinstance(filename_ext, bytes) else filename_ext + + if not format: + if ext not in EXTENSION: + init() + try: + format = EXTENSION[ext] + except KeyError as e: + msg = f"unknown file extension: {ext}" + raise ValueError(msg) from e + + if format.upper() not in SAVE: + init() + if save_all: + save_handler = SAVE_ALL[format.upper()] + else: + save_handler = SAVE[format.upper()] + + created = False + if open_fp: + created = not os.path.exists(filename) + if params.get("append", False): + # Open also for reading ("+"), because TIFF save_all + # writer needs to go back and edit the written data. + fp = builtins.open(filename, "r+b") + else: + fp = builtins.open(filename, "w+b") + else: + fp = cast(IO[bytes], fp) + + try: + save_handler(self, fp, filename) + except Exception: + if open_fp: + fp.close() + if created: + try: + os.remove(filename) + except PermissionError: + pass + raise + if open_fp: + fp.close() + + def seek(self, frame: int) -> None: + """ + Seeks to the given frame in this sequence file. If you seek + beyond the end of the sequence, the method raises an + ``EOFError`` exception. When a sequence file is opened, the + library automatically seeks to frame 0. + + See :py:meth:`~PIL.Image.Image.tell`. + + If defined, :attr:`~PIL.Image.Image.n_frames` refers to the + number of available frames. + + :param frame: Frame number, starting at 0. + :exception EOFError: If the call attempts to seek beyond the end + of the sequence. + """ + + # overridden by file handlers + if frame != 0: + msg = "no more images in file" + raise EOFError(msg) + + def show(self, title: str | None = None) -> None: + """ + Displays this image. This method is mainly intended for debugging purposes. + + This method calls :py:func:`PIL.ImageShow.show` internally. You can use + :py:func:`PIL.ImageShow.register` to override its default behaviour. + + The image is first saved to a temporary file. By default, it will be in + PNG format. + + On Unix, the image is then opened using the **xdg-open**, **display**, + **gm**, **eog** or **xv** utility, depending on which one can be found. + + On macOS, the image is opened with the native Preview application. + + On Windows, the image is opened with the standard PNG display utility. + + :param title: Optional title to use for the image window, where possible. + """ + + _show(self, title=title) + + def split(self) -> tuple[Image, ...]: + """ + Split this image into individual bands. This method returns a + tuple of individual image bands from an image. For example, + splitting an "RGB" image creates three new images each + containing a copy of one of the original bands (red, green, + blue). + + If you need only one band, :py:meth:`~PIL.Image.Image.getchannel` + method can be more convenient and faster. + + :returns: A tuple containing bands. + """ + + self.load() + if self.im.bands == 1: + return (self.copy(),) + return tuple(map(self._new, self.im.split())) + + def getchannel(self, channel: int | str) -> Image: + """ + Returns an image containing a single channel of the source image. + + :param channel: What channel to return. Could be index + (0 for "R" channel of "RGB") or channel name + ("A" for alpha channel of "RGBA"). + :returns: An image in "L" mode. + + .. versionadded:: 4.3.0 + """ + self.load() + + if isinstance(channel, str): + try: + channel = self.getbands().index(channel) + except ValueError as e: + msg = f'The image has no channel "{channel}"' + raise ValueError(msg) from e + + return self._new(self.im.getband(channel)) + + def tell(self) -> int: + """ + Returns the current frame number. See :py:meth:`~PIL.Image.Image.seek`. + + If defined, :attr:`~PIL.Image.Image.n_frames` refers to the + number of available frames. + + :returns: Frame number, starting with 0. + """ + return 0 + + def thumbnail( + self, + size: tuple[float, float], + resample: Resampling = Resampling.BICUBIC, + reducing_gap: float | None = 2.0, + ) -> None: + """ + Make this image into a thumbnail. This method modifies the + image to contain a thumbnail version of itself, no larger than + the given size. This method calculates an appropriate thumbnail + size to preserve the aspect of the image, calls the + :py:meth:`~PIL.Image.Image.draft` method to configure the file reader + (where applicable), and finally resizes the image. + + Note that this function modifies the :py:class:`~PIL.Image.Image` + object in place. If you need to use the full resolution image as well, + apply this method to a :py:meth:`~PIL.Image.Image.copy` of the original + image. + + :param size: The requested size in pixels, as a 2-tuple: + (width, height). + :param resample: Optional resampling filter. This can be one + of :py:data:`Resampling.NEAREST`, :py:data:`Resampling.BOX`, + :py:data:`Resampling.BILINEAR`, :py:data:`Resampling.HAMMING`, + :py:data:`Resampling.BICUBIC` or :py:data:`Resampling.LANCZOS`. + If omitted, it defaults to :py:data:`Resampling.BICUBIC`. + (was :py:data:`Resampling.NEAREST` prior to version 2.5.0). + See: :ref:`concept-filters`. + :param reducing_gap: Apply optimization by resizing the image + in two steps. First, reducing the image by integer times + using :py:meth:`~PIL.Image.Image.reduce` or + :py:meth:`~PIL.Image.Image.draft` for JPEG images. + Second, resizing using regular resampling. The last step + changes size no less than by ``reducing_gap`` times. + ``reducing_gap`` may be None (no first step is performed) + or should be greater than 1.0. The bigger ``reducing_gap``, + the closer the result to the fair resampling. + The smaller ``reducing_gap``, the faster resizing. + With ``reducing_gap`` greater or equal to 3.0, the result is + indistinguishable from fair resampling in most cases. + The default value is 2.0 (very close to fair resampling + while still being faster in many cases). + :returns: None + """ + + provided_size = tuple(map(math.floor, size)) + + def preserve_aspect_ratio() -> tuple[int, int] | None: + def round_aspect(number, key): + return max(min(math.floor(number), math.ceil(number), key=key), 1) + + x, y = provided_size + if x >= self.width and y >= self.height: + return None + + aspect = self.width / self.height + if x / y >= aspect: + x = round_aspect(y * aspect, key=lambda n: abs(aspect - n / y)) + else: + y = round_aspect( + x / aspect, key=lambda n: 0 if n == 0 else abs(aspect - x / n) + ) + return x, y + + box = None + final_size: tuple[int, int] + if reducing_gap is not None: + preserved_size = preserve_aspect_ratio() + if preserved_size is None: + return + final_size = preserved_size + + res = self.draft( + None, (int(size[0] * reducing_gap), int(size[1] * reducing_gap)) + ) + if res is not None: + box = res[1] + if box is None: + self.load() + + # load() may have changed the size of the image + preserved_size = preserve_aspect_ratio() + if preserved_size is None: + return + final_size = preserved_size + + if self.size != final_size: + im = self.resize(final_size, resample, box=box, reducing_gap=reducing_gap) + + self.im = im.im + self._size = final_size + self._mode = self.im.mode + + self.readonly = 0 + self.pyaccess = None + + # FIXME: the different transform methods need further explanation + # instead of bloating the method docs, add a separate chapter. + def transform( + self, + size: tuple[int, int], + method: Transform | ImageTransformHandler | SupportsGetData, + data: Sequence[Any] | None = None, + resample: int = Resampling.NEAREST, + fill: int = 1, + fillcolor: float | tuple[float, ...] | str | None = None, + ) -> Image: + """ + Transforms this image. This method creates a new image with the + given size, and the same mode as the original, and copies data + to the new image using the given transform. + + :param size: The output size in pixels, as a 2-tuple: + (width, height). + :param method: The transformation method. This is one of + :py:data:`Transform.EXTENT` (cut out a rectangular subregion), + :py:data:`Transform.AFFINE` (affine transform), + :py:data:`Transform.PERSPECTIVE` (perspective transform), + :py:data:`Transform.QUAD` (map a quadrilateral to a rectangle), or + :py:data:`Transform.MESH` (map a number of source quadrilaterals + in one operation). + + It may also be an :py:class:`~PIL.Image.ImageTransformHandler` + object:: + + class Example(Image.ImageTransformHandler): + def transform(self, size, data, resample, fill=1): + # Return result + + Implementations of :py:class:`~PIL.Image.ImageTransformHandler` + for some of the :py:class:`Transform` methods are provided + in :py:mod:`~PIL.ImageTransform`. + + It may also be an object with a ``method.getdata`` method + that returns a tuple supplying new ``method`` and ``data`` values:: + + class Example: + def getdata(self): + method = Image.Transform.EXTENT + data = (0, 0, 100, 100) + return method, data + :param data: Extra data to the transformation method. + :param resample: Optional resampling filter. It can be one of + :py:data:`Resampling.NEAREST` (use nearest neighbour), + :py:data:`Resampling.BILINEAR` (linear interpolation in a 2x2 + environment), or :py:data:`Resampling.BICUBIC` (cubic spline + interpolation in a 4x4 environment). If omitted, or if the image + has mode "1" or "P", it is set to :py:data:`Resampling.NEAREST`. + See: :ref:`concept-filters`. + :param fill: If ``method`` is an + :py:class:`~PIL.Image.ImageTransformHandler` object, this is one of + the arguments passed to it. Otherwise, it is unused. + :param fillcolor: Optional fill color for the area outside the + transform in the output image. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + if self.mode in ("LA", "RGBA") and resample != Resampling.NEAREST: + return ( + self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode]) + .transform(size, method, data, resample, fill, fillcolor) + .convert(self.mode) + ) + + if isinstance(method, ImageTransformHandler): + return method.transform(size, self, resample=resample, fill=fill) + + if hasattr(method, "getdata"): + # compatibility w. old-style transform objects + method, data = method.getdata() + + if data is None: + msg = "missing method data" + raise ValueError(msg) + + im = new(self.mode, size, fillcolor) + if self.mode == "P" and self.palette: + im.palette = self.palette.copy() + im.info = self.info.copy() + if method == Transform.MESH: + # list of quads + for box, quad in data: + im.__transformer( + box, self, Transform.QUAD, quad, resample, fillcolor is None + ) + else: + im.__transformer( + (0, 0) + size, self, method, data, resample, fillcolor is None + ) + + return im + + def __transformer( + self, box, image, method, data, resample=Resampling.NEAREST, fill=1 + ): + w = box[2] - box[0] + h = box[3] - box[1] + + if method == Transform.AFFINE: + data = data[:6] + + elif method == Transform.EXTENT: + # convert extent to an affine transform + x0, y0, x1, y1 = data + xs = (x1 - x0) / w + ys = (y1 - y0) / h + method = Transform.AFFINE + data = (xs, 0, x0, 0, ys, y0) + + elif method == Transform.PERSPECTIVE: + data = data[:8] + + elif method == Transform.QUAD: + # quadrilateral warp. data specifies the four corners + # given as NW, SW, SE, and NE. + nw = data[:2] + sw = data[2:4] + se = data[4:6] + ne = data[6:8] + x0, y0 = nw + As = 1.0 / w + At = 1.0 / h + data = ( + x0, + (ne[0] - x0) * As, + (sw[0] - x0) * At, + (se[0] - sw[0] - ne[0] + x0) * As * At, + y0, + (ne[1] - y0) * As, + (sw[1] - y0) * At, + (se[1] - sw[1] - ne[1] + y0) * As * At, + ) + + else: + msg = "unknown transformation method" + raise ValueError(msg) + + if resample not in ( + Resampling.NEAREST, + Resampling.BILINEAR, + Resampling.BICUBIC, + ): + if resample in (Resampling.BOX, Resampling.HAMMING, Resampling.LANCZOS): + msg = { + Resampling.BOX: "Image.Resampling.BOX", + Resampling.HAMMING: "Image.Resampling.HAMMING", + Resampling.LANCZOS: "Image.Resampling.LANCZOS", + }[resample] + f" ({resample}) cannot be used." + else: + msg = f"Unknown resampling filter ({resample})." + + filters = [ + f"{filter[1]} ({filter[0]})" + for filter in ( + (Resampling.NEAREST, "Image.Resampling.NEAREST"), + (Resampling.BILINEAR, "Image.Resampling.BILINEAR"), + (Resampling.BICUBIC, "Image.Resampling.BICUBIC"), + ) + ] + msg += f" Use {', '.join(filters[:-1])} or {filters[-1]}" + raise ValueError(msg) + + image.load() + + self.load() + + if image.mode in ("1", "P"): + resample = Resampling.NEAREST + + self.im.transform(box, image.im, method, data, resample, fill) + + def transpose(self, method: Transpose) -> Image: + """ + Transpose image (flip or rotate in 90 degree steps) + + :param method: One of :py:data:`Transpose.FLIP_LEFT_RIGHT`, + :py:data:`Transpose.FLIP_TOP_BOTTOM`, :py:data:`Transpose.ROTATE_90`, + :py:data:`Transpose.ROTATE_180`, :py:data:`Transpose.ROTATE_270`, + :py:data:`Transpose.TRANSPOSE` or :py:data:`Transpose.TRANSVERSE`. + :returns: Returns a flipped or rotated copy of this image. + """ + + self.load() + return self._new(self.im.transpose(method)) + + def effect_spread(self, distance: int) -> Image: + """ + Randomly spread pixels in an image. + + :param distance: Distance to spread pixels. + """ + self.load() + return self._new(self.im.effect_spread(distance)) + + def toqimage(self): + """Returns a QImage copy of this image""" + from . import ImageQt + + if not ImageQt.qt_is_installed: + msg = "Qt bindings are not installed" + raise ImportError(msg) + return ImageQt.toqimage(self) + + def toqpixmap(self): + """Returns a QPixmap copy of this image""" + from . import ImageQt + + if not ImageQt.qt_is_installed: + msg = "Qt bindings are not installed" + raise ImportError(msg) + return ImageQt.toqpixmap(self) + + +# -------------------------------------------------------------------- +# Abstract handlers. + + +class ImagePointHandler: + """ + Used as a mixin by point transforms + (for use with :py:meth:`~PIL.Image.Image.point`) + """ + + @abc.abstractmethod + def point(self, im: Image) -> Image: + pass + + +class ImageTransformHandler: + """ + Used as a mixin by geometry transforms + (for use with :py:meth:`~PIL.Image.Image.transform`) + """ + + @abc.abstractmethod + def transform( + self, + size: tuple[int, int], + image: Image, + **options: Any, + ) -> Image: + pass + + +# -------------------------------------------------------------------- +# Factories + +# +# Debugging + + +def _wedge() -> Image: + """Create grayscale wedge (for debugging only)""" + + return Image()._new(core.wedge("L")) + + +def _check_size(size: Any) -> None: + """ + Common check to enforce type and sanity check on size tuples + + :param size: Should be a 2 tuple of (width, height) + :returns: None, or raises a ValueError + """ + + if not isinstance(size, (list, tuple)): + msg = "Size must be a list or tuple" + raise ValueError(msg) + if len(size) != 2: + msg = "Size must be a sequence of length 2" + raise ValueError(msg) + if size[0] < 0 or size[1] < 0: + msg = "Width and height must be >= 0" + raise ValueError(msg) + + +def new( + mode: str, + size: tuple[int, int] | list[int], + color: float | tuple[float, ...] | str | None = 0, +) -> Image: + """ + Creates a new image with the given mode and size. + + :param mode: The mode to use for the new image. See: + :ref:`concept-modes`. + :param size: A 2-tuple, containing (width, height) in pixels. + :param color: What color to use for the image. Default is black. + If given, this should be a single integer or floating point value + for single-band modes, and a tuple for multi-band modes (one value + per band). When creating RGB or HSV images, you can also use color + strings as supported by the ImageColor module. If the color is + None, the image is not initialised. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + if mode in ("BGR;15", "BGR;16", "BGR;24"): + deprecate(mode, 12) + + _check_size(size) + + if color is None: + # don't initialize + return Image()._new(core.new(mode, size)) + + if isinstance(color, str): + # css3-style specifier + + from . import ImageColor + + color = ImageColor.getcolor(color, mode) + + im = Image() + if ( + mode == "P" + and isinstance(color, (list, tuple)) + and all(isinstance(i, int) for i in color) + ): + color_ints: tuple[int, ...] = cast(Tuple[int, ...], tuple(color)) + if len(color_ints) == 3 or len(color_ints) == 4: + # RGB or RGBA value for a P image + from . import ImagePalette + + im.palette = ImagePalette.ImagePalette() + color = im.palette.getcolor(color_ints) + return im._new(core.fill(mode, size, color)) + + +def frombytes( + mode: str, + size: tuple[int, int], + data: bytes | bytearray, + decoder_name: str = "raw", + *args: Any, +) -> Image: + """ + Creates a copy of an image memory from pixel data in a buffer. + + In its simplest form, this function takes three arguments + (mode, size, and unpacked pixel data). + + You can also use any pixel decoder supported by PIL. For more + information on available decoders, see the section + :ref:`Writing Your Own File Codec `. + + Note that this function decodes pixel data only, not entire images. + If you have an entire image in a string, wrap it in a + :py:class:`~io.BytesIO` object, and use :py:func:`~PIL.Image.open` to load + it. + + :param mode: The image mode. See: :ref:`concept-modes`. + :param size: The image size. + :param data: A byte buffer containing raw data for the given mode. + :param decoder_name: What decoder to use. + :param args: Additional parameters for the given decoder. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + _check_size(size) + + im = new(mode, size) + if im.width != 0 and im.height != 0: + decoder_args: Any = args + if len(decoder_args) == 1 and isinstance(decoder_args[0], tuple): + # may pass tuple instead of argument list + decoder_args = decoder_args[0] + + if decoder_name == "raw" and decoder_args == (): + decoder_args = mode + + im.frombytes(data, decoder_name, decoder_args) + return im + + +def frombuffer( + mode: str, size: tuple[int, int], data, decoder_name: str = "raw", *args: Any +) -> Image: + """ + Creates an image memory referencing pixel data in a byte buffer. + + This function is similar to :py:func:`~PIL.Image.frombytes`, but uses data + in the byte buffer, where possible. This means that changes to the + original buffer object are reflected in this image). Not all modes can + share memory; supported modes include "L", "RGBX", "RGBA", and "CMYK". + + Note that this function decodes pixel data only, not entire images. + If you have an entire image file in a string, wrap it in a + :py:class:`~io.BytesIO` object, and use :py:func:`~PIL.Image.open` to load it. + + The default parameters used for the "raw" decoder differs from that used for + :py:func:`~PIL.Image.frombytes`. This is a bug, and will probably be fixed in a + future release. The current release issues a warning if you do this; to disable + the warning, you should provide the full set of parameters. See below for details. + + :param mode: The image mode. See: :ref:`concept-modes`. + :param size: The image size. + :param data: A bytes or other buffer object containing raw + data for the given mode. + :param decoder_name: What decoder to use. + :param args: Additional parameters for the given decoder. For the + default encoder ("raw"), it's recommended that you provide the + full set of parameters:: + + frombuffer(mode, size, data, "raw", mode, 0, 1) + + :returns: An :py:class:`~PIL.Image.Image` object. + + .. versionadded:: 1.1.4 + """ + + _check_size(size) + + # may pass tuple instead of argument list + if len(args) == 1 and isinstance(args[0], tuple): + args = args[0] + + if decoder_name == "raw": + if args == (): + args = mode, 0, 1 + if args[0] in _MAPMODES: + im = new(mode, (0, 0)) + im = im._new(core.map_buffer(data, size, decoder_name, 0, args)) + if mode == "P": + from . import ImagePalette + + im.palette = ImagePalette.ImagePalette("RGB", im.im.getpalette("RGB")) + im.readonly = 1 + return im + + return frombytes(mode, size, data, decoder_name, args) + + +class SupportsArrayInterface(Protocol): + """ + An object that has an ``__array_interface__`` dictionary. + """ + + @property + def __array_interface__(self) -> dict[str, Any]: + raise NotImplementedError() + + +def fromarray(obj: SupportsArrayInterface, mode: str | None = None) -> Image: + """ + Creates an image memory from an object exporting the array interface + (using the buffer protocol):: + + from PIL import Image + import numpy as np + a = np.zeros((5, 5)) + im = Image.fromarray(a) + + If ``obj`` is not contiguous, then the ``tobytes`` method is called + and :py:func:`~PIL.Image.frombuffer` is used. + + In the case of NumPy, be aware that Pillow modes do not always correspond + to NumPy dtypes. Pillow modes only offer 1-bit pixels, 8-bit pixels, + 32-bit signed integer pixels, and 32-bit floating point pixels. + + Pillow images can also be converted to arrays:: + + from PIL import Image + import numpy as np + im = Image.open("hopper.jpg") + a = np.asarray(im) + + When converting Pillow images to arrays however, only pixel values are + transferred. This means that P and PA mode images will lose their palette. + + :param obj: Object with array interface + :param mode: Optional mode to use when reading ``obj``. Will be determined from + type if ``None``. + + This will not be used to convert the data after reading, but will be used to + change how the data is read:: + + from PIL import Image + import numpy as np + a = np.full((1, 1), 300) + im = Image.fromarray(a, mode="L") + im.getpixel((0, 0)) # 44 + im = Image.fromarray(a, mode="RGB") + im.getpixel((0, 0)) # (44, 1, 0) + + See: :ref:`concept-modes` for general information about modes. + :returns: An image object. + + .. versionadded:: 1.1.6 + """ + arr = obj.__array_interface__ + shape = arr["shape"] + ndim = len(shape) + strides = arr.get("strides", None) + if mode is None: + try: + typekey = (1, 1) + shape[2:], arr["typestr"] + except KeyError as e: + msg = "Cannot handle this data type" + raise TypeError(msg) from e + try: + mode, rawmode = _fromarray_typemap[typekey] + except KeyError as e: + typekey_shape, typestr = typekey + msg = f"Cannot handle this data type: {typekey_shape}, {typestr}" + raise TypeError(msg) from e + else: + rawmode = mode + if mode in ["1", "L", "I", "P", "F"]: + ndmax = 2 + elif mode == "RGB": + ndmax = 3 + else: + ndmax = 4 + if ndim > ndmax: + msg = f"Too many dimensions: {ndim} > {ndmax}." + raise ValueError(msg) + + size = 1 if ndim == 1 else shape[1], shape[0] + if strides is not None: + if hasattr(obj, "tobytes"): + obj = obj.tobytes() + elif hasattr(obj, "tostring"): + obj = obj.tostring() + else: + msg = "'strides' requires either tobytes() or tostring()" + raise ValueError(msg) + + return frombuffer(mode, size, obj, "raw", rawmode, 0, 1) + + +def fromqimage(im): + """Creates an image instance from a QImage image""" + from . import ImageQt + + if not ImageQt.qt_is_installed: + msg = "Qt bindings are not installed" + raise ImportError(msg) + return ImageQt.fromqimage(im) + + +def fromqpixmap(im): + """Creates an image instance from a QPixmap image""" + from . import ImageQt + + if not ImageQt.qt_is_installed: + msg = "Qt bindings are not installed" + raise ImportError(msg) + return ImageQt.fromqpixmap(im) + + +_fromarray_typemap = { + # (shape, typestr) => mode, rawmode + # first two members of shape are set to one + ((1, 1), "|b1"): ("1", "1;8"), + ((1, 1), "|u1"): ("L", "L"), + ((1, 1), "|i1"): ("I", "I;8"), + ((1, 1), "u2"): ("I", "I;16B"), + ((1, 1), "i2"): ("I", "I;16BS"), + ((1, 1), "u4"): ("I", "I;32B"), + ((1, 1), "i4"): ("I", "I;32BS"), + ((1, 1), "f4"): ("F", "F;32BF"), + ((1, 1), "f8"): ("F", "F;64BF"), + ((1, 1, 2), "|u1"): ("LA", "LA"), + ((1, 1, 3), "|u1"): ("RGB", "RGB"), + ((1, 1, 4), "|u1"): ("RGBA", "RGBA"), + # shortcuts: + ((1, 1), f"{_ENDIAN}i4"): ("I", "I"), + ((1, 1), f"{_ENDIAN}f4"): ("F", "F"), +} + + +def _decompression_bomb_check(size: tuple[int, int]) -> None: + if MAX_IMAGE_PIXELS is None: + return + + pixels = max(1, size[0]) * max(1, size[1]) + + if pixels > 2 * MAX_IMAGE_PIXELS: + msg = ( + f"Image size ({pixels} pixels) exceeds limit of {2 * MAX_IMAGE_PIXELS} " + "pixels, could be decompression bomb DOS attack." + ) + raise DecompressionBombError(msg) + + if pixels > MAX_IMAGE_PIXELS: + warnings.warn( + f"Image size ({pixels} pixels) exceeds limit of {MAX_IMAGE_PIXELS} pixels, " + "could be decompression bomb DOS attack.", + DecompressionBombWarning, + ) + + +def open( + fp: StrOrBytesPath | IO[bytes], + mode: Literal["r"] = "r", + formats: list[str] | tuple[str, ...] | None = None, +) -> ImageFile.ImageFile: + """ + Opens and identifies the given image file. + + This is a lazy operation; this function identifies the file, but + the file remains open and the actual image data is not read from + the file until you try to process the data (or call the + :py:meth:`~PIL.Image.Image.load` method). See + :py:func:`~PIL.Image.new`. See :ref:`file-handling`. + + :param fp: A filename (string), os.PathLike object or a file object. + The file object must implement ``file.read``, + ``file.seek``, and ``file.tell`` methods, + and be opened in binary mode. The file object will also seek to zero + before reading. + :param mode: The mode. If given, this argument must be "r". + :param formats: A list or tuple of formats to attempt to load the file in. + This can be used to restrict the set of formats checked. + Pass ``None`` to try all supported formats. You can print the set of + available formats by running ``python3 -m PIL`` or using + the :py:func:`PIL.features.pilinfo` function. + :returns: An :py:class:`~PIL.Image.Image` object. + :exception FileNotFoundError: If the file cannot be found. + :exception PIL.UnidentifiedImageError: If the image cannot be opened and + identified. + :exception ValueError: If the ``mode`` is not "r", or if a ``StringIO`` + instance is used for ``fp``. + :exception TypeError: If ``formats`` is not ``None``, a list or a tuple. + """ + + if mode != "r": + msg = f"bad mode {repr(mode)}" # type: ignore[unreachable] + raise ValueError(msg) + elif isinstance(fp, io.StringIO): + msg = ( # type: ignore[unreachable] + "StringIO cannot be used to open an image. " + "Binary data must be used instead." + ) + raise ValueError(msg) + + if formats is None: + formats = ID + elif not isinstance(formats, (list, tuple)): + msg = "formats must be a list or tuple" # type: ignore[unreachable] + raise TypeError(msg) + + exclusive_fp = False + filename: str | bytes = "" + if is_path(fp): + filename = os.path.realpath(os.fspath(fp)) + + if filename: + fp = builtins.open(filename, "rb") + exclusive_fp = True + else: + fp = cast(IO[bytes], fp) + + try: + fp.seek(0) + except (AttributeError, io.UnsupportedOperation): + fp = io.BytesIO(fp.read()) + exclusive_fp = True + + prefix = fp.read(16) + + preinit() + + warning_messages: list[str] = [] + + def _open_core( + fp: IO[bytes], + filename: str | bytes, + prefix: bytes, + formats: list[str] | tuple[str, ...], + ) -> ImageFile.ImageFile | None: + for i in formats: + i = i.upper() + if i not in OPEN: + init() + try: + factory, accept = OPEN[i] + result = not accept or accept(prefix) + if isinstance(result, str): + warning_messages.append(result) + elif result: + fp.seek(0) + im = factory(fp, filename) + _decompression_bomb_check(im.size) + return im + except (SyntaxError, IndexError, TypeError, struct.error) as e: + if WARN_POSSIBLE_FORMATS: + warning_messages.append(i + " opening failed. " + str(e)) + except BaseException: + if exclusive_fp: + fp.close() + raise + return None + + im = _open_core(fp, filename, prefix, formats) + + if im is None and formats is ID: + checked_formats = ID.copy() + if init(): + im = _open_core( + fp, + filename, + prefix, + tuple(format for format in formats if format not in checked_formats), + ) + + if im: + im._exclusive_fp = exclusive_fp + return im + + if exclusive_fp: + fp.close() + for message in warning_messages: + warnings.warn(message) + msg = "cannot identify image file %r" % (filename if filename else fp) + raise UnidentifiedImageError(msg) + + +# +# Image processing. + + +def alpha_composite(im1: Image, im2: Image) -> Image: + """ + Alpha composite im2 over im1. + + :param im1: The first image. Must have mode RGBA. + :param im2: The second image. Must have mode RGBA, and the same size as + the first image. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + im1.load() + im2.load() + return im1._new(core.alpha_composite(im1.im, im2.im)) + + +def blend(im1: Image, im2: Image, alpha: float) -> Image: + """ + Creates a new image by interpolating between two input images, using + a constant alpha:: + + out = image1 * (1.0 - alpha) + image2 * alpha + + :param im1: The first image. + :param im2: The second image. Must have the same mode and size as + the first image. + :param alpha: The interpolation alpha factor. If alpha is 0.0, a + copy of the first image is returned. If alpha is 1.0, a copy of + the second image is returned. There are no restrictions on the + alpha value. If necessary, the result is clipped to fit into + the allowed output range. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + im1.load() + im2.load() + return im1._new(core.blend(im1.im, im2.im, alpha)) + + +def composite(image1: Image, image2: Image, mask: Image) -> Image: + """ + Create composite image by blending images using a transparency mask. + + :param image1: The first image. + :param image2: The second image. Must have the same mode and + size as the first image. + :param mask: A mask image. This image can have mode + "1", "L", or "RGBA", and must have the same size as the + other two images. + """ + + image = image2.copy() + image.paste(image1, None, mask) + return image + + +def eval(image, *args): + """ + Applies the function (which should take one argument) to each pixel + in the given image. If the image has more than one band, the same + function is applied to each band. Note that the function is + evaluated once for each possible pixel value, so you cannot use + random components or other generators. + + :param image: The input image. + :param function: A function object, taking one integer argument. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + return image.point(args[0]) + + +def merge(mode: str, bands: Sequence[Image]) -> Image: + """ + Merge a set of single band images into a new multiband image. + + :param mode: The mode to use for the output image. See: + :ref:`concept-modes`. + :param bands: A sequence containing one single-band image for + each band in the output image. All bands must have the + same size. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + + if getmodebands(mode) != len(bands) or "*" in mode: + msg = "wrong number of bands" + raise ValueError(msg) + for band in bands[1:]: + if band.mode != getmodetype(mode): + msg = "mode mismatch" + raise ValueError(msg) + if band.size != bands[0].size: + msg = "size mismatch" + raise ValueError(msg) + for band in bands: + band.load() + return bands[0]._new(core.merge(mode, *[b.im for b in bands])) + + +# -------------------------------------------------------------------- +# Plugin registry + + +def register_open( + id: str, + factory: Callable[[IO[bytes], str | bytes], ImageFile.ImageFile], + accept: Callable[[bytes], bool | str] | None = None, +) -> None: + """ + Register an image file plugin. This function should not be used + in application code. + + :param id: An image format identifier. + :param factory: An image file factory method. + :param accept: An optional function that can be used to quickly + reject images having another format. + """ + id = id.upper() + if id not in ID: + ID.append(id) + OPEN[id] = factory, accept + + +def register_mime(id: str, mimetype: str) -> None: + """ + Registers an image MIME type by populating ``Image.MIME``. This function + should not be used in application code. + + ``Image.MIME`` provides a mapping from image format identifiers to mime + formats, but :py:meth:`~PIL.ImageFile.ImageFile.get_format_mimetype` can + provide a different result for specific images. + + :param id: An image format identifier. + :param mimetype: The image MIME type for this format. + """ + MIME[id.upper()] = mimetype + + +def register_save( + id: str, driver: Callable[[Image, IO[bytes], str | bytes], None] +) -> None: + """ + Registers an image save function. This function should not be + used in application code. + + :param id: An image format identifier. + :param driver: A function to save images in this format. + """ + SAVE[id.upper()] = driver + + +def register_save_all( + id: str, driver: Callable[[Image, IO[bytes], str | bytes], None] +) -> None: + """ + Registers an image function to save all the frames + of a multiframe format. This function should not be + used in application code. + + :param id: An image format identifier. + :param driver: A function to save images in this format. + """ + SAVE_ALL[id.upper()] = driver + + +def register_extension(id: str, extension: str) -> None: + """ + Registers an image extension. This function should not be + used in application code. + + :param id: An image format identifier. + :param extension: An extension used for this format. + """ + EXTENSION[extension.lower()] = id.upper() + + +def register_extensions(id: str, extensions: list[str]) -> None: + """ + Registers image extensions. This function should not be + used in application code. + + :param id: An image format identifier. + :param extensions: A list of extensions used for this format. + """ + for extension in extensions: + register_extension(id, extension) + + +def registered_extensions() -> dict[str, str]: + """ + Returns a dictionary containing all file extensions belonging + to registered plugins + """ + init() + return EXTENSION + + +def register_decoder(name: str, decoder: type[ImageFile.PyDecoder]) -> None: + """ + Registers an image decoder. This function should not be + used in application code. + + :param name: The name of the decoder + :param decoder: An ImageFile.PyDecoder object + + .. versionadded:: 4.1.0 + """ + DECODERS[name] = decoder + + +def register_encoder(name: str, encoder: type[ImageFile.PyEncoder]) -> None: + """ + Registers an image encoder. This function should not be + used in application code. + + :param name: The name of the encoder + :param encoder: An ImageFile.PyEncoder object + + .. versionadded:: 4.1.0 + """ + ENCODERS[name] = encoder + + +# -------------------------------------------------------------------- +# Simple display support. + + +def _show(image: Image, **options: Any) -> None: + from . import ImageShow + + ImageShow.show(image, **options) + + +# -------------------------------------------------------------------- +# Effects + + +def effect_mandelbrot( + size: tuple[int, int], extent: tuple[float, float, float, float], quality: int +) -> Image: + """ + Generate a Mandelbrot set covering the given extent. + + :param size: The requested size in pixels, as a 2-tuple: + (width, height). + :param extent: The extent to cover, as a 4-tuple: + (x0, y0, x1, y1). + :param quality: Quality. + """ + return Image()._new(core.effect_mandelbrot(size, extent, quality)) + + +def effect_noise(size: tuple[int, int], sigma: float) -> Image: + """ + Generate Gaussian noise centered around 128. + + :param size: The requested size in pixels, as a 2-tuple: + (width, height). + :param sigma: Standard deviation of noise. + """ + return Image()._new(core.effect_noise(size, sigma)) + + +def linear_gradient(mode: str) -> Image: + """ + Generate 256x256 linear gradient from black to white, top to bottom. + + :param mode: Input mode. + """ + return Image()._new(core.linear_gradient(mode)) + + +def radial_gradient(mode: str) -> Image: + """ + Generate 256x256 radial gradient from black to white, centre to edge. + + :param mode: Input mode. + """ + return Image()._new(core.radial_gradient(mode)) + + +# -------------------------------------------------------------------- +# Resources + + +def _apply_env_variables(env: dict[str, str] | None = None) -> None: + env_dict = env if env is not None else os.environ + + for var_name, setter in [ + ("PILLOW_ALIGNMENT", core.set_alignment), + ("PILLOW_BLOCK_SIZE", core.set_block_size), + ("PILLOW_BLOCKS_MAX", core.set_blocks_max), + ]: + if var_name not in env_dict: + continue + + var = env_dict[var_name].lower() + + units = 1 + for postfix, mul in [("k", 1024), ("m", 1024 * 1024)]: + if var.endswith(postfix): + units = mul + var = var[: -len(postfix)] + + try: + var_int = int(var) * units + except ValueError: + warnings.warn(f"{var_name} is not int") + continue + + try: + setter(var_int) + except ValueError as e: + warnings.warn(f"{var_name}: {e}") + + +_apply_env_variables() +atexit.register(core.clear_cache) + + +if TYPE_CHECKING: + _ExifBase = MutableMapping[int, Any] +else: + _ExifBase = MutableMapping + + +class Exif(_ExifBase): + """ + This class provides read and write access to EXIF image data:: + + from PIL import Image + im = Image.open("exif.png") + exif = im.getexif() # Returns an instance of this class + + Information can be read and written, iterated over or deleted:: + + print(exif[274]) # 1 + exif[274] = 2 + for k, v in exif.items(): + print("Tag", k, "Value", v) # Tag 274 Value 2 + del exif[274] + + To access information beyond IFD0, :py:meth:`~PIL.Image.Exif.get_ifd` + returns a dictionary:: + + from PIL import ExifTags + im = Image.open("exif_gps.jpg") + exif = im.getexif() + gps_ifd = exif.get_ifd(ExifTags.IFD.GPSInfo) + print(gps_ifd) + + Other IFDs include ``ExifTags.IFD.Exif``, ``ExifTags.IFD.Makernote``, + ``ExifTags.IFD.Interop`` and ``ExifTags.IFD.IFD1``. + + :py:mod:`~PIL.ExifTags` also has enum classes to provide names for data:: + + print(exif[ExifTags.Base.Software]) # PIL + print(gps_ifd[ExifTags.GPS.GPSDateStamp]) # 1999:99:99 99:99:99 + """ + + endian = None + bigtiff = False + _loaded = False + + def __init__(self): + self._data = {} + self._hidden_data = {} + self._ifds = {} + self._info = None + self._loaded_exif = None + + def _fixup(self, value): + try: + if len(value) == 1 and isinstance(value, tuple): + return value[0] + except Exception: + pass + return value + + def _fixup_dict(self, src_dict): + # Helper function + # returns a dict with any single item tuples/lists as individual values + return {k: self._fixup(v) for k, v in src_dict.items()} + + def _get_ifd_dict(self, offset, group=None): + try: + # an offset pointer to the location of the nested embedded IFD. + # It should be a long, but may be corrupted. + self.fp.seek(offset) + except (KeyError, TypeError): + pass + else: + from . import TiffImagePlugin + + info = TiffImagePlugin.ImageFileDirectory_v2(self.head, group=group) + info.load(self.fp) + return self._fixup_dict(info) + + def _get_head(self): + version = b"\x2B" if self.bigtiff else b"\x2A" + if self.endian == "<": + head = b"II" + version + b"\x00" + o32le(8) + else: + head = b"MM\x00" + version + o32be(8) + if self.bigtiff: + head += o32le(8) if self.endian == "<" else o32be(8) + head += b"\x00\x00\x00\x00" + return head + + def load(self, data): + # Extract EXIF information. This is highly experimental, + # and is likely to be replaced with something better in a future + # version. + + # The EXIF record consists of a TIFF file embedded in a JPEG + # application marker (!). + if data == self._loaded_exif: + return + self._loaded_exif = data + self._data.clear() + self._hidden_data.clear() + self._ifds.clear() + if data and data.startswith(b"Exif\x00\x00"): + data = data[6:] + if not data: + self._info = None + return + + self.fp = io.BytesIO(data) + self.head = self.fp.read(8) + # process dictionary + from . import TiffImagePlugin + + self._info = TiffImagePlugin.ImageFileDirectory_v2(self.head) + self.endian = self._info._endian + self.fp.seek(self._info.next) + self._info.load(self.fp) + + def load_from_fp(self, fp, offset=None): + self._loaded_exif = None + self._data.clear() + self._hidden_data.clear() + self._ifds.clear() + + # process dictionary + from . import TiffImagePlugin + + self.fp = fp + if offset is not None: + self.head = self._get_head() + else: + self.head = self.fp.read(8) + self._info = TiffImagePlugin.ImageFileDirectory_v2(self.head) + if self.endian is None: + self.endian = self._info._endian + if offset is None: + offset = self._info.next + self.fp.tell() + self.fp.seek(offset) + self._info.load(self.fp) + + def _get_merged_dict(self): + merged_dict = dict(self) + + # get EXIF extension + if ExifTags.IFD.Exif in self: + ifd = self._get_ifd_dict(self[ExifTags.IFD.Exif], ExifTags.IFD.Exif) + if ifd: + merged_dict.update(ifd) + + # GPS + if ExifTags.IFD.GPSInfo in self: + merged_dict[ExifTags.IFD.GPSInfo] = self._get_ifd_dict( + self[ExifTags.IFD.GPSInfo], ExifTags.IFD.GPSInfo + ) + + return merged_dict + + def tobytes(self, offset: int = 8) -> bytes: + from . import TiffImagePlugin + + head = self._get_head() + ifd = TiffImagePlugin.ImageFileDirectory_v2(ifh=head) + for tag, value in self.items(): + if tag in [ + ExifTags.IFD.Exif, + ExifTags.IFD.GPSInfo, + ] and not isinstance(value, dict): + value = self.get_ifd(tag) + if ( + tag == ExifTags.IFD.Exif + and ExifTags.IFD.Interop in value + and not isinstance(value[ExifTags.IFD.Interop], dict) + ): + value = value.copy() + value[ExifTags.IFD.Interop] = self.get_ifd(ExifTags.IFD.Interop) + ifd[tag] = value + return b"Exif\x00\x00" + head + ifd.tobytes(offset) + + def get_ifd(self, tag): + if tag not in self._ifds: + if tag == ExifTags.IFD.IFD1: + if self._info is not None and self._info.next != 0: + self._ifds[tag] = self._get_ifd_dict(self._info.next) + elif tag in [ExifTags.IFD.Exif, ExifTags.IFD.GPSInfo]: + offset = self._hidden_data.get(tag, self.get(tag)) + if offset is not None: + self._ifds[tag] = self._get_ifd_dict(offset, tag) + elif tag in [ExifTags.IFD.Interop, ExifTags.IFD.Makernote]: + if ExifTags.IFD.Exif not in self._ifds: + self.get_ifd(ExifTags.IFD.Exif) + tag_data = self._ifds[ExifTags.IFD.Exif][tag] + if tag == ExifTags.IFD.Makernote: + from .TiffImagePlugin import ImageFileDirectory_v2 + + if tag_data[:8] == b"FUJIFILM": + ifd_offset = i32le(tag_data, 8) + ifd_data = tag_data[ifd_offset:] + + makernote = {} + for i in range(0, struct.unpack(" 4: + (offset,) = struct.unpack("H", tag_data[:2])[0]): + ifd_tag, typ, count, data = struct.unpack( + ">HHL4s", tag_data[i * 12 + 2 : (i + 1) * 12 + 2] + ) + if ifd_tag == 0x1101: + # CameraInfo + (offset,) = struct.unpack(">L", data) + self.fp.seek(offset) + + camerainfo = {"ModelID": self.fp.read(4)} + + self.fp.read(4) + # Seconds since 2000 + camerainfo["TimeStamp"] = i32le(self.fp.read(12)) + + self.fp.read(4) + camerainfo["InternalSerialNumber"] = self.fp.read(4) + + self.fp.read(12) + parallax = self.fp.read(4) + handler = ImageFileDirectory_v2._load_dispatch[ + TiffTags.FLOAT + ][1] + camerainfo["Parallax"] = handler( + ImageFileDirectory_v2(), parallax, False + ) + + self.fp.read(4) + camerainfo["Category"] = self.fp.read(2) + + makernote = {0x1101: dict(self._fixup_dict(camerainfo))} + self._ifds[tag] = makernote + else: + # Interop + self._ifds[tag] = self._get_ifd_dict(tag_data, tag) + ifd = self._ifds.get(tag, {}) + if tag == ExifTags.IFD.Exif and self._hidden_data: + ifd = { + k: v + for (k, v) in ifd.items() + if k not in (ExifTags.IFD.Interop, ExifTags.IFD.Makernote) + } + return ifd + + def hide_offsets(self) -> None: + for tag in (ExifTags.IFD.Exif, ExifTags.IFD.GPSInfo): + if tag in self: + self._hidden_data[tag] = self[tag] + del self[tag] + + def __str__(self) -> str: + if self._info is not None: + # Load all keys into self._data + for tag in self._info: + self[tag] + + return str(self._data) + + def __len__(self) -> int: + keys = set(self._data) + if self._info is not None: + keys.update(self._info) + return len(keys) + + def __getitem__(self, tag): + if self._info is not None and tag not in self._data and tag in self._info: + self._data[tag] = self._fixup(self._info[tag]) + del self._info[tag] + return self._data[tag] + + def __contains__(self, tag) -> bool: + return tag in self._data or (self._info is not None and tag in self._info) + + def __setitem__(self, tag, value) -> None: + if self._info is not None and tag in self._info: + del self._info[tag] + self._data[tag] = value + + def __delitem__(self, tag: int) -> None: + if self._info is not None and tag in self._info: + del self._info[tag] + else: + del self._data[tag] + + def __iter__(self): + keys = set(self._data) + if self._info is not None: + keys.update(self._info) + return iter(keys)