import pytest import networkx as nx from networkx.generators.classic import empty_graph from networkx.utils import edges_equal, nodes_equal class TestRelabel: def test_convert_node_labels_to_integers(self): # test that empty graph converts fine for all options G = empty_graph() H = nx.convert_node_labels_to_integers(G, 100) assert list(H.nodes()) == [] assert list(H.edges()) == [] for opt in ["default", "sorted", "increasing degree", "decreasing degree"]: G = empty_graph() H = nx.convert_node_labels_to_integers(G, 100, ordering=opt) assert list(H.nodes()) == [] assert list(H.edges()) == [] G = empty_graph() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) H = nx.convert_node_labels_to_integers(G) degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) H = nx.convert_node_labels_to_integers(G, 1000) degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert nodes_equal(H.nodes(), [1000, 1001, 1002, 1003]) H = nx.convert_node_labels_to_integers(G, ordering="increasing degree") degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert H.degree(0) == 1 assert H.degree(1) == 2 assert H.degree(2) == 2 assert H.degree(3) == 3 H = nx.convert_node_labels_to_integers(G, ordering="decreasing degree") degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert H.degree(0) == 3 assert H.degree(1) == 2 assert H.degree(2) == 2 assert H.degree(3) == 1 H = nx.convert_node_labels_to_integers( G, ordering="increasing degree", label_attribute="label" ) degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert H.degree(0) == 1 assert H.degree(1) == 2 assert H.degree(2) == 2 assert H.degree(3) == 3 # check mapping assert H.nodes[3]["label"] == "C" assert H.nodes[0]["label"] == "D" assert H.nodes[1]["label"] == "A" or H.nodes[2]["label"] == "A" assert H.nodes[1]["label"] == "B" or H.nodes[2]["label"] == "B" def test_convert_to_integers2(self): G = empty_graph() G.add_edges_from([("C", "D"), ("A", "B"), ("A", "C"), ("B", "C")]) H = nx.convert_node_labels_to_integers(G, ordering="sorted") degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) H = nx.convert_node_labels_to_integers( G, ordering="sorted", label_attribute="label" ) assert H.nodes[0]["label"] == "A" assert H.nodes[1]["label"] == "B" assert H.nodes[2]["label"] == "C" assert H.nodes[3]["label"] == "D" def test_convert_to_integers_raise(self): with pytest.raises(nx.NetworkXError): G = nx.Graph() H = nx.convert_node_labels_to_integers(G, ordering="increasing age") def test_relabel_nodes_copy(self): G = nx.empty_graph() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"} H = nx.relabel_nodes(G, mapping) assert nodes_equal(H.nodes(), ["aardvark", "bear", "cat", "dog"]) def test_relabel_nodes_function(self): G = nx.empty_graph() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) # function mapping no longer encouraged but works def mapping(n): return ord(n) H = nx.relabel_nodes(G, mapping) assert nodes_equal(H.nodes(), [65, 66, 67, 68]) def test_relabel_nodes_callable_type(self): G = nx.path_graph(4) H = nx.relabel_nodes(G, str) assert nodes_equal(H.nodes, ["0", "1", "2", "3"]) @pytest.mark.parametrize("non_mc", ("0123", ["0", "1", "2", "3"])) def test_relabel_nodes_non_mapping_or_callable(self, non_mc): """If `mapping` is neither a Callable or a Mapping, an exception should be raised.""" G = nx.path_graph(4) with pytest.raises(AttributeError): nx.relabel_nodes(G, non_mc) def test_relabel_nodes_graph(self): G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"} H = nx.relabel_nodes(G, mapping) assert nodes_equal(H.nodes(), ["aardvark", "bear", "cat", "dog"]) def test_relabel_nodes_orderedgraph(self): G = nx.Graph() G.add_nodes_from([1, 2, 3]) G.add_edges_from([(1, 3), (2, 3)]) mapping = {1: "a", 2: "b", 3: "c"} H = nx.relabel_nodes(G, mapping) assert list(H.nodes) == ["a", "b", "c"] def test_relabel_nodes_digraph(self): G = nx.DiGraph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"} H = nx.relabel_nodes(G, mapping, copy=False) assert nodes_equal(H.nodes(), ["aardvark", "bear", "cat", "dog"]) def test_relabel_nodes_multigraph(self): G = nx.MultiGraph([("a", "b"), ("a", "b")]) mapping = {"a": "aardvark", "b": "bear"} G = nx.relabel_nodes(G, mapping, copy=False) assert nodes_equal(G.nodes(), ["aardvark", "bear"]) assert edges_equal(G.edges(), [("aardvark", "bear"), ("aardvark", "bear")]) def test_relabel_nodes_multidigraph(self): G = nx.MultiDiGraph([("a", "b"), ("a", "b")]) mapping = {"a": "aardvark", "b": "bear"} G = nx.relabel_nodes(G, mapping, copy=False) assert nodes_equal(G.nodes(), ["aardvark", "bear"]) assert edges_equal(G.edges(), [("aardvark", "bear"), ("aardvark", "bear")]) def test_relabel_isolated_nodes_to_same(self): G = nx.Graph() G.add_nodes_from(range(4)) mapping = {1: 1} H = nx.relabel_nodes(G, mapping, copy=False) assert nodes_equal(H.nodes(), list(range(4))) def test_relabel_nodes_missing(self): G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) mapping = {0: "aardvark"} # copy=True H = nx.relabel_nodes(G, mapping, copy=True) assert nodes_equal(H.nodes, G.nodes) # copy=False GG = G.copy() nx.relabel_nodes(G, mapping, copy=False) assert nodes_equal(G.nodes, GG.nodes) def test_relabel_copy_name(self): G = nx.Graph() H = nx.relabel_nodes(G, {}, copy=True) assert H.graph == G.graph H = nx.relabel_nodes(G, {}, copy=False) assert H.graph == G.graph G.name = "first" H = nx.relabel_nodes(G, {}, copy=True) assert H.graph == G.graph H = nx.relabel_nodes(G, {}, copy=False) assert H.graph == G.graph def test_relabel_toposort(self): K5 = nx.complete_graph(4) G = nx.complete_graph(4) G = nx.relabel_nodes(G, {i: i + 1 for i in range(4)}, copy=False) assert nx.is_isomorphic(K5, G) G = nx.complete_graph(4) G = nx.relabel_nodes(G, {i: i - 1 for i in range(4)}, copy=False) assert nx.is_isomorphic(K5, G) def test_relabel_selfloop(self): G = nx.DiGraph([(1, 1), (1, 2), (2, 3)]) G = nx.relabel_nodes(G, {1: "One", 2: "Two", 3: "Three"}, copy=False) assert nodes_equal(G.nodes(), ["One", "Three", "Two"]) G = nx.MultiDiGraph([(1, 1), (1, 2), (2, 3)]) G = nx.relabel_nodes(G, {1: "One", 2: "Two", 3: "Three"}, copy=False) assert nodes_equal(G.nodes(), ["One", "Three", "Two"]) G = nx.MultiDiGraph([(1, 1)]) G = nx.relabel_nodes(G, {1: 0}, copy=False) assert nodes_equal(G.nodes(), [0]) def test_relabel_multidigraph_inout_merge_nodes(self): for MG in (nx.MultiGraph, nx.MultiDiGraph): for cc in (True, False): G = MG([(0, 4), (1, 4), (4, 2), (4, 3)]) G[0][4][0]["value"] = "a" G[1][4][0]["value"] = "b" G[4][2][0]["value"] = "c" G[4][3][0]["value"] = "d" G.add_edge(0, 4, key="x", value="e") G.add_edge(4, 3, key="x", value="f") mapping = {0: 9, 1: 9, 2: 9, 3: 9} H = nx.relabel_nodes(G, mapping, copy=cc) # No ordering on keys enforced assert {"value": "a"} in H[9][4].values() assert {"value": "b"} in H[9][4].values() assert {"value": "c"} in H[4][9].values() assert len(H[4][9]) == 3 if G.is_directed() else 6 assert {"value": "d"} in H[4][9].values() assert {"value": "e"} in H[9][4].values() assert {"value": "f"} in H[4][9].values() assert len(H[9][4]) == 3 if G.is_directed() else 6 def test_relabel_multigraph_merge_inplace(self): G = nx.MultiGraph([(0, 1), (0, 2), (0, 3), (0, 1), (0, 2), (0, 3)]) G[0][1][0]["value"] = "a" G[0][2][0]["value"] = "b" G[0][3][0]["value"] = "c" mapping = {1: 4, 2: 4, 3: 4} nx.relabel_nodes(G, mapping, copy=False) # No ordering on keys enforced assert {"value": "a"} in G[0][4].values() assert {"value": "b"} in G[0][4].values() assert {"value": "c"} in G[0][4].values() def test_relabel_multidigraph_merge_inplace(self): G = nx.MultiDiGraph([(0, 1), (0, 2), (0, 3)]) G[0][1][0]["value"] = "a" G[0][2][0]["value"] = "b" G[0][3][0]["value"] = "c" mapping = {1: 4, 2: 4, 3: 4} nx.relabel_nodes(G, mapping, copy=False) # No ordering on keys enforced assert {"value": "a"} in G[0][4].values() assert {"value": "b"} in G[0][4].values() assert {"value": "c"} in G[0][4].values() def test_relabel_multidigraph_inout_copy(self): G = nx.MultiDiGraph([(0, 4), (1, 4), (4, 2), (4, 3)]) G[0][4][0]["value"] = "a" G[1][4][0]["value"] = "b" G[4][2][0]["value"] = "c" G[4][3][0]["value"] = "d" G.add_edge(0, 4, key="x", value="e") G.add_edge(4, 3, key="x", value="f") mapping = {0: 9, 1: 9, 2: 9, 3: 9} H = nx.relabel_nodes(G, mapping, copy=True) # No ordering on keys enforced assert {"value": "a"} in H[9][4].values() assert {"value": "b"} in H[9][4].values() assert {"value": "c"} in H[4][9].values() assert len(H[4][9]) == 3 assert {"value": "d"} in H[4][9].values() assert {"value": "e"} in H[9][4].values() assert {"value": "f"} in H[4][9].values() assert len(H[9][4]) == 3 def test_relabel_multigraph_merge_copy(self): G = nx.MultiGraph([(0, 1), (0, 2), (0, 3)]) G[0][1][0]["value"] = "a" G[0][2][0]["value"] = "b" G[0][3][0]["value"] = "c" mapping = {1: 4, 2: 4, 3: 4} H = nx.relabel_nodes(G, mapping, copy=True) assert {"value": "a"} in H[0][4].values() assert {"value": "b"} in H[0][4].values() assert {"value": "c"} in H[0][4].values() def test_relabel_multidigraph_merge_copy(self): G = nx.MultiDiGraph([(0, 1), (0, 2), (0, 3)]) G[0][1][0]["value"] = "a" G[0][2][0]["value"] = "b" G[0][3][0]["value"] = "c" mapping = {1: 4, 2: 4, 3: 4} H = nx.relabel_nodes(G, mapping, copy=True) assert {"value": "a"} in H[0][4].values() assert {"value": "b"} in H[0][4].values() assert {"value": "c"} in H[0][4].values() def test_relabel_multigraph_nonnumeric_key(self): for MG in (nx.MultiGraph, nx.MultiDiGraph): for cc in (True, False): G = nx.MultiGraph() G.add_edge(0, 1, key="I", value="a") G.add_edge(0, 2, key="II", value="b") G.add_edge(0, 3, key="II", value="c") mapping = {1: 4, 2: 4, 3: 4} nx.relabel_nodes(G, mapping, copy=False) assert {"value": "a"} in G[0][4].values() assert {"value": "b"} in G[0][4].values() assert {"value": "c"} in G[0][4].values() assert 0 in G[0][4] assert "I" in G[0][4] assert "II" in G[0][4] def test_relabel_circular(self): G = nx.path_graph(3) mapping = {0: 1, 1: 0} H = nx.relabel_nodes(G, mapping, copy=True) with pytest.raises(nx.NetworkXUnfeasible): H = nx.relabel_nodes(G, mapping, copy=False) def test_relabel_preserve_node_order_full_mapping_with_copy_true(self): G = nx.path_graph(3) original_order = list(G.nodes()) mapping = {2: "a", 1: "b", 0: "c"} # dictionary keys out of order on purpose H = nx.relabel_nodes(G, mapping, copy=True) new_order = list(H.nodes()) assert [mapping.get(i, i) for i in original_order] == new_order def test_relabel_preserve_node_order_full_mapping_with_copy_false(self): G = nx.path_graph(3) original_order = list(G) mapping = {2: "a", 1: "b", 0: "c"} # dictionary keys out of order on purpose H = nx.relabel_nodes(G, mapping, copy=False) new_order = list(H) assert [mapping.get(i, i) for i in original_order] == new_order def test_relabel_preserve_node_order_partial_mapping_with_copy_true(self): G = nx.path_graph(3) original_order = list(G) mapping = {1: "a", 0: "b"} # partial mapping and keys out of order on purpose H = nx.relabel_nodes(G, mapping, copy=True) new_order = list(H) assert [mapping.get(i, i) for i in original_order] == new_order def test_relabel_preserve_node_order_partial_mapping_with_copy_false(self): G = nx.path_graph(3) original_order = list(G) mapping = {1: "a", 0: "b"} # partial mapping and keys out of order on purpose H = nx.relabel_nodes(G, mapping, copy=False) new_order = list(H) assert [mapping.get(i, i) for i in original_order] != new_order