import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class HalfCheetahEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 20, } def __init__(self, **kwargs): observation_space = Box(low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64) MuJocoPyEnv.__init__( self, "half_cheetah.xml", 5, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def step(self, action): xposbefore = self.sim.data.qpos[0] self.do_simulation(action, self.frame_skip) xposafter = self.sim.data.qpos[0] ob = self._get_obs() reward_ctrl = -0.1 * np.square(action).sum() reward_run = (xposafter - xposbefore) / self.dt reward = reward_ctrl + reward_run terminated = False if self.render_mode == "human": self.render() return ( ob, reward, terminated, False, dict(reward_run=reward_run, reward_ctrl=reward_ctrl), ) def _get_obs(self): return np.concatenate( [ self.sim.data.qpos.flat[1:], self.sim.data.qvel.flat, ] ) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( low=-0.1, high=0.1, size=self.model.nq ) qvel = self.init_qvel + self.np_random.standard_normal(self.model.nv) * 0.1 self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): assert self.viewer is not None self.viewer.cam.distance = self.model.stat.extent * 0.5