import os from mlagents.trainers.exception import UnityTrainerException from mlagents.trainers.settings import TrainerSettings from mlagents.trainers.model_saver.torch_model_saver import DEFAULT_CHECKPOINT_NAME def validate_existing_directories( output_path: str, resume: bool, force: bool, init_path: str = None ) -> None: """ Validates that if the run_id model exists, we do not overwrite it unless --force is specified. Throws an exception if resume isn't specified and run_id exists. Throws an exception if --resume is specified and run-id was not found. :param model_path: The model path specified. :param summary_path: The summary path to be used. :param resume: Whether or not the --resume flag was passed. :param force: Whether or not the --force flag was passed. :param init_path: Path to run-id dir to initialize from """ output_path_exists = os.path.isdir(output_path) if output_path_exists: if not resume and not force: raise UnityTrainerException( "Previous data from this run ID was found. " "Either specify a new run ID, use --resume to resume this run, " "or use the --force parameter to overwrite existing data." ) else: if resume: raise UnityTrainerException( "Previous data from this run ID was not found. " "Train a new run by removing the --resume flag." ) # Verify init path if specified. if init_path is not None: if not os.path.isdir(init_path): raise UnityTrainerException( "Could not initialize from {}. " "Make sure models have already been saved with that run ID.".format( init_path ) ) def setup_init_path( behaviors: TrainerSettings.DefaultTrainerDict, init_dir: str ) -> None: """ For each behavior, setup full init_path to checkpoint file to initialize policy from :param behaviors: mapping from behavior_name to TrainerSettings :param init_dir: Path to run-id dir to initialize from """ for behavior_name, ts in behaviors.items(): if ts.init_path is None: # set default if None ts.init_path = os.path.join( init_dir, behavior_name, DEFAULT_CHECKPOINT_NAME ) elif not os.path.dirname(ts.init_path): # update to full path if just the file name ts.init_path = os.path.join(init_dir, behavior_name, ts.init_path) _validate_init_full_path(ts.init_path) def _validate_init_full_path(init_file: str) -> None: """ Validate initialization path to be a .pt file :param init_file: full path to initialization checkpoint file """ if not (os.path.isfile(init_file) and init_file.endswith(".pt")): raise UnityTrainerException( f"Could not initialize from {init_file}. file does not exists or is not a `.pt` file" )