""" Utility functions for integer math. TODO: rename, cleanup, perhaps move the gmpy wrapper code here from settings.py """ import math from bisect import bisect from .backend import xrange from .backend import BACKEND, gmpy, sage, sage_utils, MPZ, MPZ_ONE, MPZ_ZERO small_trailing = [0] * 256 for j in range(1,8): small_trailing[1<>> giant_steps(50,1000) [66, 128, 253, 502, 1000] >>> giant_steps(50,1000,4) [65, 252, 1000] """ L = [target] while L[-1] > start*n: L = L + [L[-1]//n + 2] return L[::-1] def rshift(x, n): """For an integer x, calculate x >> n with the fastest (floor) rounding. Unlike the plain Python expression (x >> n), n is allowed to be negative, in which case a left shift is performed.""" if n >= 0: return x >> n else: return x << (-n) def lshift(x, n): """For an integer x, calculate x << n. Unlike the plain Python expression (x << n), n is allowed to be negative, in which case a right shift with default (floor) rounding is performed.""" if n >= 0: return x << n else: return x >> (-n) if BACKEND == 'sage': import operator rshift = operator.rshift lshift = operator.lshift def python_trailing(n): """Count the number of trailing zero bits in abs(n).""" if not n: return 0 low_byte = n & 0xff if low_byte: return small_trailing[low_byte] t = 8 n >>= 8 while not n & 0xff: n >>= 8 t += 8 return t + small_trailing[n & 0xff] if BACKEND == 'gmpy': if gmpy.version() >= '2': def gmpy_trailing(n): """Count the number of trailing zero bits in abs(n) using gmpy.""" if n: return MPZ(n).bit_scan1() else: return 0 else: def gmpy_trailing(n): """Count the number of trailing zero bits in abs(n) using gmpy.""" if n: return MPZ(n).scan1() else: return 0 # Small powers of 2 powers = [1<<_ for _ in range(300)] def python_bitcount(n): """Calculate bit size of the nonnegative integer n.""" bc = bisect(powers, n) if bc != 300: return bc bc = int(math.log(n, 2)) - 4 return bc + bctable[n>>bc] def gmpy_bitcount(n): """Calculate bit size of the nonnegative integer n.""" if n: return MPZ(n).numdigits(2) else: return 0 #def sage_bitcount(n): # if n: return MPZ(n).nbits() # else: return 0 def sage_trailing(n): return MPZ(n).trailing_zero_bits() if BACKEND == 'gmpy': bitcount = gmpy_bitcount trailing = gmpy_trailing elif BACKEND == 'sage': sage_bitcount = sage_utils.bitcount bitcount = sage_bitcount trailing = sage_trailing else: bitcount = python_bitcount trailing = python_trailing if BACKEND == 'gmpy' and 'bit_length' in dir(gmpy): bitcount = gmpy.bit_length # Used to avoid slow function calls as far as possible trailtable = [trailing(n) for n in range(256)] bctable = [bitcount(n) for n in range(1024)] # TODO: speed up for bases 2, 4, 8, 16, ... def bin_to_radix(x, xbits, base, bdigits): """Changes radix of a fixed-point number; i.e., converts x * 2**xbits to floor(x * 10**bdigits).""" return x * (MPZ(base)**bdigits) >> xbits stddigits = '0123456789abcdefghijklmnopqrstuvwxyz' def small_numeral(n, base=10, digits=stddigits): """Return the string numeral of a positive integer in an arbitrary base. Most efficient for small input.""" if base == 10: return str(n) digs = [] while n: n, digit = divmod(n, base) digs.append(digits[digit]) return "".join(digs[::-1]) def numeral_python(n, base=10, size=0, digits=stddigits): """Represent the integer n as a string of digits in the given base. Recursive division is used to make this function about 3x faster than Python's str() for converting integers to decimal strings. The 'size' parameters specifies the number of digits in n; this number is only used to determine splitting points and need not be exact.""" if n <= 0: if not n: return "0" return "-" + numeral(-n, base, size, digits) # Fast enough to do directly if size < 250: return small_numeral(n, base, digits) # Divide in half half = (size // 2) + (size & 1) A, B = divmod(n, base**half) ad = numeral(A, base, half, digits) bd = numeral(B, base, half, digits).rjust(half, "0") return ad + bd def numeral_gmpy(n, base=10, size=0, digits=stddigits): """Represent the integer n as a string of digits in the given base. Recursive division is used to make this function about 3x faster than Python's str() for converting integers to decimal strings. The 'size' parameters specifies the number of digits in n; this number is only used to determine splitting points and need not be exact.""" if n < 0: return "-" + numeral(-n, base, size, digits) # gmpy.digits() may cause a segmentation fault when trying to convert # extremely large values to a string. The size limit may need to be # adjusted on some platforms, but 1500000 works on Windows and Linux. if size < 1500000: return gmpy.digits(n, base) # Divide in half half = (size // 2) + (size & 1) A, B = divmod(n, MPZ(base)**half) ad = numeral(A, base, half, digits) bd = numeral(B, base, half, digits).rjust(half, "0") return ad + bd if BACKEND == "gmpy": numeral = numeral_gmpy else: numeral = numeral_python _1_800 = 1<<800 _1_600 = 1<<600 _1_400 = 1<<400 _1_200 = 1<<200 _1_100 = 1<<100 _1_50 = 1<<50 def isqrt_small_python(x): """ Correctly (floor) rounded integer square root, using division. Fast up to ~200 digits. """ if not x: return x if x < _1_800: # Exact with IEEE double precision arithmetic if x < _1_50: return int(x**0.5) # Initial estimate can be any integer >= the true root; round up r = int(x**0.5 * 1.00000000000001) + 1 else: bc = bitcount(x) n = bc//2 r = int((x>>(2*n-100))**0.5+2)<<(n-50) # +2 is to round up # The following iteration now precisely computes floor(sqrt(x)) # See e.g. Crandall & Pomerance, "Prime Numbers: A Computational # Perspective" while 1: y = (r+x//r)>>1 if y >= r: return r r = y def isqrt_fast_python(x): """ Fast approximate integer square root, computed using division-free Newton iteration for large x. For random integers the result is almost always correct (floor(sqrt(x))), but is 1 ulp too small with a roughly 0.1% probability. If x is very close to an exact square, the answer is 1 ulp wrong with high probability. With 0 guard bits, the largest error over a set of 10^5 random inputs of size 1-10^5 bits was 3 ulp. The use of 10 guard bits almost certainly guarantees a max 1 ulp error. """ # Use direct division-based iteration if sqrt(x) < 2^400 # Assume floating-point square root accurate to within 1 ulp, then: # 0 Newton iterations good to 52 bits # 1 Newton iterations good to 104 bits # 2 Newton iterations good to 208 bits # 3 Newton iterations good to 416 bits if x < _1_800: y = int(x**0.5) if x >= _1_100: y = (y + x//y) >> 1 if x >= _1_200: y = (y + x//y) >> 1 if x >= _1_400: y = (y + x//y) >> 1 return y bc = bitcount(x) guard_bits = 10 x <<= 2*guard_bits bc += 2*guard_bits bc += (bc&1) hbc = bc//2 startprec = min(50, hbc) # Newton iteration for 1/sqrt(x), with floating-point starting value r = int(2.0**(2*startprec) * (x >> (bc-2*startprec)) ** -0.5) pp = startprec for p in giant_steps(startprec, hbc): # r**2, scaled from real size 2**(-bc) to 2**p r2 = (r*r) >> (2*pp - p) # x*r**2, scaled from real size ~1.0 to 2**p xr2 = ((x >> (bc-p)) * r2) >> p # New value of r, scaled from real size 2**(-bc/2) to 2**p r = (r * ((3<> (pp+1) pp = p # (1/sqrt(x))*x = sqrt(x) return (r*(x>>hbc)) >> (p+guard_bits) def sqrtrem_python(x): """Correctly rounded integer (floor) square root with remainder.""" # to check cutoff: # plot(lambda x: timing(isqrt, 2**int(x)), [0,2000]) if x < _1_600: y = isqrt_small_python(x) return y, x - y*y y = isqrt_fast_python(x) + 1 rem = x - y*y # Correct remainder while rem < 0: y -= 1 rem += (1+2*y) else: if rem: while rem > 2*(1+y): y += 1 rem -= (1+2*y) return y, rem def isqrt_python(x): """Integer square root with correct (floor) rounding.""" return sqrtrem_python(x)[0] def sqrt_fixed(x, prec): return isqrt_fast(x<= '2': isqrt_small = isqrt_fast = isqrt = gmpy.isqrt sqrtrem = gmpy.isqrt_rem else: isqrt_small = isqrt_fast = isqrt = gmpy.sqrt sqrtrem = gmpy.sqrtrem elif BACKEND == 'sage': isqrt_small = isqrt_fast = isqrt = \ getattr(sage_utils, "isqrt", lambda n: MPZ(n).isqrt()) sqrtrem = lambda n: MPZ(n).sqrtrem() else: isqrt_small = isqrt_small_python isqrt_fast = isqrt_fast_python isqrt = isqrt_python sqrtrem = sqrtrem_python def ifib(n, _cache={}): """Computes the nth Fibonacci number as an integer, for integer n.""" if n < 0: return (-1)**(-n+1) * ifib(-n) if n in _cache: return _cache[n] m = n # Use Dijkstra's logarithmic algorithm # The following implementation is basically equivalent to # http://en.literateprograms.org/Fibonacci_numbers_(Scheme) a, b, p, q = MPZ_ONE, MPZ_ZERO, MPZ_ZERO, MPZ_ONE while n: if n & 1: aq = a*q a, b = b*q+aq+a*p, b*p+aq n -= 1 else: qq = q*q p, q = p*p+qq, qq+2*p*q n >>= 1 if m < 250: _cache[m] = b return b MAX_FACTORIAL_CACHE = 1000 def ifac(n, memo={0:1, 1:1}): """Return n factorial (for integers n >= 0 only).""" f = memo.get(n) if f: return f k = len(memo) p = memo[k-1] MAX = MAX_FACTORIAL_CACHE while k <= n: p *= k if k <= MAX: memo[k] = p k += 1 return p def ifac2(n, memo_pair=[{0:1}, {1:1}]): """Return n!! (double factorial), integers n >= 0 only.""" memo = memo_pair[n&1] f = memo.get(n) if f: return f k = max(memo) p = memo[k] MAX = MAX_FACTORIAL_CACHE while k < n: k += 2 p *= k if k <= MAX: memo[k] = p return p if BACKEND == 'gmpy': ifac = gmpy.fac elif BACKEND == 'sage': ifac = lambda n: int(sage.factorial(n)) ifib = sage.fibonacci def list_primes(n): n = n + 1 sieve = list(xrange(n)) sieve[:2] = [0, 0] for i in xrange(2, int(n**0.5)+1): if sieve[i]: for j in xrange(i**2, n, i): sieve[j] = 0 return [p for p in sieve if p] if BACKEND == 'sage': # Note: it is *VERY* important for performance that we convert # the list to Python ints. def list_primes(n): return [int(_) for _ in sage.primes(n+1)] small_odd_primes = (3,5,7,11,13,17,19,23,29,31,37,41,43,47) small_odd_primes_set = set(small_odd_primes) def isprime(n): """ Determines whether n is a prime number. A probabilistic test is performed if n is very large. No special trick is used for detecting perfect powers. >>> sum(list_primes(100000)) 454396537 >>> sum(n*isprime(n) for n in range(100000)) 454396537 """ n = int(n) if not n & 1: return n == 2 if n < 50: return n in small_odd_primes_set for p in small_odd_primes: if not n % p: return False m = n-1 s = trailing(m) d = m >> s def test(a): x = pow(a,d,n) if x == 1 or x == m: return True for r in xrange(1,s): x = x**2 % n if x == m: return True return False # See http://primes.utm.edu/prove/prove2_3.html if n < 1373653: witnesses = [2,3] elif n < 341550071728321: witnesses = [2,3,5,7,11,13,17] else: witnesses = small_odd_primes for a in witnesses: if not test(a): return False return True def moebius(n): """ Evaluates the Moebius function which is `mu(n) = (-1)^k` if `n` is a product of `k` distinct primes and `mu(n) = 0` otherwise. TODO: speed up using factorization """ n = abs(int(n)) if n < 2: return n factors = [] for p in xrange(2, n+1): if not (n % p): if not (n % p**2): return 0 if not sum(p % f for f in factors): factors.append(p) return (-1)**len(factors) def gcd(*args): a = 0 for b in args: if a: while b: a, b = b, a % b else: a = b return a # Comment by Juan Arias de Reyna: # # I learn this method to compute EulerE[2n] from van de Lune. # # We apply the formula EulerE[2n] = (-1)^n 2**(-2n) sum_{j=0}^n a(2n,2j+1) # # where the numbers a(n,j) vanish for j > n+1 or j <= -1 and satisfies # # a(0,-1) = a(0,0) = 0; a(0,1)= 1; a(0,2) = a(0,3) = 0 # # a(n,j) = a(n-1,j) when n+j is even # a(n,j) = (j-1) a(n-1,j-1) + (j+1) a(n-1,j+1) when n+j is odd # # # But we can use only one array unidimensional a(j) since to compute # a(n,j) we only need to know a(n-1,k) where k and j are of different parity # and we have not to conserve the used values. # # We cached up the values of Euler numbers to sufficiently high order. # # Important Observation: If we pretend to use the numbers # EulerE[1], EulerE[2], ... , EulerE[n] # it is convenient to compute first EulerE[n], since the algorithm # computes first all # the previous ones, and keeps them in the CACHE MAX_EULER_CACHE = 500 def eulernum(m, _cache={0:MPZ_ONE}): r""" Computes the Euler numbers `E(n)`, which can be defined as coefficients of the Taylor expansion of `1/cosh x`: .. math :: \frac{1}{\cosh x} = \sum_{n=0}^\infty \frac{E_n}{n!} x^n Example:: >>> [int(eulernum(n)) for n in range(11)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] >>> [int(eulernum(n)) for n in range(11)] # test cache [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] """ # for odd m > 1, the Euler numbers are zero if m & 1: return MPZ_ZERO f = _cache.get(m) if f: return f MAX = MAX_EULER_CACHE n = m a = [MPZ(_) for _ in [0,0,1,0,0,0]] for n in range(1, m+1): for j in range(n+1, -1, -2): a[j+1] = (j-1)*a[j] + (j+1)*a[j+2] a.append(0) suma = 0 for k in range(n+1, -1, -2): suma += a[k+1] if n <= MAX: _cache[n] = ((-1)**(n//2))*(suma // 2**n) if n == m: return ((-1)**(n//2))*suma // 2**n def stirling1(n, k): """ Stirling number of the first kind. """ if n < 0 or k < 0: raise ValueError if k >= n: return MPZ(n == k) if k < 1: return MPZ_ZERO L = [MPZ_ZERO] * (k+1) L[1] = MPZ_ONE for m in xrange(2, n+1): for j in xrange(min(k, m), 0, -1): L[j] = (m-1) * L[j] + L[j-1] return (-1)**(n+k) * L[k] def stirling2(n, k): """ Stirling number of the second kind. """ if n < 0 or k < 0: raise ValueError if k >= n: return MPZ(n == k) if k <= 1: return MPZ(k == 1) s = MPZ_ZERO t = MPZ_ONE for j in xrange(k+1): if (k + j) & 1: s -= t * MPZ(j)**n else: s += t * MPZ(j)**n t = t * (k - j) // (j + 1) return s // ifac(k)