import inspect from typing import Any, Callable, Dict, Iterable, Optional, Tuple, Type, Union import torch from torch._streambase import _EventBase, _StreamBase get_cuda_stream: Optional[Callable[[int], int]] if torch.cuda._is_compiled(): from torch._C import _cuda_getCurrentRawStream as get_cuda_stream else: get_cuda_stream = None _device_t = Union[torch.device, str, int, None] # Recording the device properties in the main process but used in worker process. caching_worker_device_properties: Dict[str, Any] = {} caching_worker_current_devices: Dict[str, int] = {} class DeviceInterfaceMeta(type): def __new__(metacls, *args, **kwargs): class_member = args[2] if "Event" in class_member: assert inspect.isclass(class_member["Event"]) and issubclass( class_member["Event"], _EventBase ), "DeviceInterface member Event should be inherit from _EventBase" if "Stream" in class_member: assert inspect.isclass(class_member["Stream"]) and issubclass( class_member["Stream"], _StreamBase ), "DeviceInterface member Stream should be inherit from _StreamBase" return super().__new__(metacls, *args, **kwargs) class DeviceInterface(metaclass=DeviceInterfaceMeta): """ This is a simple device runtime interface for Inductor. It enables custom backends to be integrated with Inductor in a device-agnostic semantic. """ class device: def __new__(cls, device: _device_t): raise NotImplementedError() class Worker: """ Worker API to query device properties that will work in multi processing workers that cannot use the GPU APIs (due to processing fork() and initialization time issues). Properties are recorded in the main process before we fork the workers. """ @staticmethod def set_device(device: int): raise NotImplementedError() @staticmethod def current_device() -> int: raise NotImplementedError() @staticmethod def get_device_properties(device: _device_t = None): raise NotImplementedError() @staticmethod def current_device(): raise NotImplementedError() @staticmethod def set_device(device: _device_t): raise NotImplementedError() @staticmethod def device_count(): raise NotImplementedError() @staticmethod def is_available() -> bool: raise NotImplementedError() @staticmethod def stream(stream: torch.Stream): raise NotImplementedError() @staticmethod def current_stream(): raise NotImplementedError() @staticmethod def set_stream(stream: torch.Stream): raise NotImplementedError() @staticmethod def _set_stream_by_id(stream_id: int, device_index: int, device_type: int): raise NotImplementedError() @staticmethod def get_raw_stream(): raise NotImplementedError() @staticmethod def synchronize(device: _device_t = None): raise NotImplementedError() @staticmethod def get_device_properties(device: _device_t = None): raise NotImplementedError() @staticmethod def get_compute_capability(device: _device_t = None): raise NotImplementedError() class CudaInterface(DeviceInterface): device = torch.cuda.device # register Event and Stream class into the backend interface # make sure Event and Stream are implemented and inherited from the _EventBase and _StreamBase Event = torch.cuda.Event Stream = torch.cuda.Stream class Worker: @staticmethod def set_device(device: int): caching_worker_current_devices["cuda"] = device @staticmethod def current_device() -> int: if "cuda" in caching_worker_current_devices: return caching_worker_current_devices["cuda"] return torch.cuda.current_device() @staticmethod def get_device_properties(device: _device_t = None): if device is not None: if isinstance(device, str): device = torch.device(device) assert device.type == "cuda" if isinstance(device, torch.device): device = device.index if device is None: device = CudaInterface.Worker.current_device() if "cuda" not in caching_worker_device_properties: device_prop = [ torch.cuda.get_device_properties(i) for i in range(torch.cuda.device_count()) ] caching_worker_device_properties["cuda"] = device_prop return caching_worker_device_properties["cuda"][device] current_device = staticmethod(torch.cuda.current_device) set_device = staticmethod(torch.cuda.set_device) device_count = staticmethod(torch.cuda.device_count) stream = staticmethod(torch.cuda.stream) # type: ignore[assignment] current_stream = staticmethod(torch.cuda.current_stream) set_stream = staticmethod(torch.cuda.set_stream) # type: ignore[assignment] _set_stream_by_id = staticmethod(torch.cuda._set_stream_by_id) # type: ignore[assignment] synchronize = staticmethod(torch.cuda.synchronize) get_device_properties = staticmethod(torch.cuda.get_device_properties) # type: ignore[assignment] get_raw_stream = staticmethod(get_cuda_stream) # type: ignore[arg-type] # Can be mock patched by @patch decorator. @staticmethod def is_available() -> bool: return torch.cuda.is_available() @staticmethod def get_compute_capability(device: _device_t = None): major, min = torch.cuda.get_device_capability(device) return major * 10 + min device_interfaces: Dict[str, Type[DeviceInterface]] = {} def register_interface_for_device( device: Union[str, torch.device], device_interface: Type[DeviceInterface] ): if isinstance(device, torch.device): device = str(device) device_interfaces[device] = device_interface def get_interface_for_device(device: Union[str, torch.device]) -> Type[DeviceInterface]: if isinstance(device, torch.device): device = str(device) if device in device_interfaces: return device_interfaces[device] raise NotImplementedError(f"No interface for device {device}") def get_registered_device_interfaces() -> Iterable[Tuple[str, Type[DeviceInterface]]]: return device_interfaces.items() register_interface_for_device("cuda", CudaInterface) for i in range(torch.cuda.device_count()): register_interface_for_device(f"cuda:{i}", CudaInterface)