import torch._functorch.apis as apis import torch._functorch.eager_transforms as _impl import torch._functorch.make_functional as _nn_impl from torch._functorch.vmap import in_dims_t, out_dims_t from torch._functorch.eager_transforms import argnums_t import torch.nn as nn import textwrap from typing import Any, Callable, Optional, Tuple, Union import warnings """ The APIs in this file are exposed as `functorch.*`. They are thin wrappers around the torch.func.* APIs that have deprecation warnings -- we're trying to move people to the torch.func.* equivalents. NB: We don't use *args, **kwargs in the signatures because that changes the documentation. """ def get_warning(api, new_api=None, replace_newlines=False): if new_api is None: new_api = f'torch.func.{api}' warning = ( f"We've integrated functorch into PyTorch. As the final step of the \n" f"integration, functorch.{api} is deprecated as of PyTorch \n" f"2.0 and will be deleted in a future version of PyTorch >= 2.3. \n" f"Please use {new_api} instead; see the PyTorch 2.0 release notes \n" f"and/or the torch.func migration guide for more details \n" f"https://pytorch.org/docs/master/func.migrating.html" ) if replace_newlines: warning = warning.replace("\n", "") return warning def warn_deprecated(api, new_api=None): warning = get_warning(api, new_api, replace_newlines=True) warnings.warn(warning, stacklevel=2) def setup_docs(functorch_api, torch_func_api=None, new_api_name=None): api_name = functorch_api.__name__ if torch_func_api is None: torch_func_api = getattr(_impl, api_name) # See https://docs.python.org/3/using/cmdline.html#cmdoption-OO if torch_func_api.__doc__ is None: return warning = get_warning(api_name, new_api_name) warning_note = "\n.. warning::\n\n" + textwrap.indent(warning, " ") warning_note = textwrap.indent(warning_note, " ") functorch_api.__doc__ = torch_func_api.__doc__ + warning_note def vmap( func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0, randomness: str = 'error', *, chunk_size=None) -> Callable: warn_deprecated('vmap', 'torch.vmap') return apis.vmap(func, in_dims, out_dims, randomness, chunk_size=chunk_size) def grad(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable: warn_deprecated('grad') return apis.grad(func, argnums, has_aux) def grad_and_value(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable: warn_deprecated('grad_and_value') return apis.grad_and_value(func, argnums, has_aux) def vjp(func: Callable, *primals, has_aux: bool = False): warn_deprecated('vjp') return _impl.vjp(func, *primals, has_aux=has_aux) def jvp(func: Callable, primals: Any, tangents: Any, *, strict: bool = False, has_aux: bool = False): warn_deprecated('jvp') return _impl.jvp(func, primals, tangents, strict=strict, has_aux=has_aux) def jacrev(func: Callable, argnums: Union[int, Tuple[int]] = 0, *, has_aux=False, chunk_size: Optional[int] = None, _preallocate_and_copy=False): warn_deprecated('jacrev') return _impl.jacrev(func, argnums, has_aux=has_aux, chunk_size=chunk_size, _preallocate_and_copy=_preallocate_and_copy) def jacfwd(func: Callable, argnums: argnums_t = 0, has_aux: bool = False, *, randomness: str = "error"): warn_deprecated('jacfwd') return _impl.jacfwd(func, argnums, has_aux, randomness=randomness) def hessian(func, argnums=0): warn_deprecated('hessian') return _impl.hessian(func, argnums=argnums) def functionalize(func: Callable, *, remove: str = 'mutations') -> Callable: warn_deprecated('functionalize') return _impl.functionalize(func, remove=remove) def make_functional(model: nn.Module, disable_autograd_tracking: bool = False): warn_deprecated('make_functional', 'torch.func.functional_call') return _nn_impl.make_functional(model, disable_autograd_tracking) def make_functional_with_buffers(model: nn.Module, disable_autograd_tracking: bool = False): warn_deprecated('make_functional_with_buffers', 'torch.func.functional_call') return _nn_impl.make_functional_with_buffers(model, disable_autograd_tracking) def combine_state_for_ensemble(models): warn_deprecated('combine_state_for_ensemble', 'torch.func.stack_module_state') return _nn_impl.combine_state_for_ensemble(models) setup_docs(vmap, apis.vmap, 'torch.vmap') setup_docs(grad, apis.grad) setup_docs(grad_and_value, apis.grad_and_value) setup_docs(vjp) setup_docs(jvp) setup_docs(jacrev) setup_docs(jacfwd) setup_docs(hessian) setup_docs(functionalize) setup_docs(make_functional, _nn_impl.make_functional, 'torch.func.functional_call') setup_docs(make_functional_with_buffers, _nn_impl.make_functional, 'torch.func.functional_call') setup_docs(combine_state_for_ensemble, _nn_impl.combine_state_for_ensemble, 'torch.func.stack_module_state')