from typing import Callable, Optional from torch._prims.context import TorchRefsMode from torch.fx import GraphModule from torch.fx.experimental.proxy_tensor import make_fx, wrapper_and_args_for_make_fx def execute( gm: GraphModule, *args, executor: str = "aten", executor_parameters: Optional[dict] = None, ): """ Prototype ATen executor. Just executes the context's graph. """ if executor == "aten": return gm.forward(*args) msg = f"Received unexpected value for 'executor': {executor}. Allowed values are: aten." raise ValueError(msg) def make_traced(fn: Callable): """ Returns a function that, when called, will trace its torch operations to prims and then execute those prims on the requested trace executor (possibly lowering them to that trace executor first). Only supports the torch operations defined in _torch_to_reference_map in context.py and operations with positional args. All args must be tensors. In the near future all these restrictions will be lifted. Example usage: def foo(a, b): return torch.add(a, b) traced_foo = make_traced(foo) a = torch.randn((1, 2, 3, 4, 5), device='cuda') b = torch.randn((1, 2, 3, 4, 5), device='cuda') result = traced_foo(a, b, executor='aten') """ def _traced(*args, executor="aten", **kwargs): # TODO: caching wrapped, all_args = wrapper_and_args_for_make_fx(fn, args, kwargs) with TorchRefsMode(): gm = make_fx(wrapped)(all_args) return execute(gm, all_args, executor=executor) return _traced