import math import torch from torch.distributions import constraints from torch.distributions.distribution import Distribution from torch.distributions.utils import _standard_normal, lazy_property __all__ = ["MultivariateNormal"] def _batch_mv(bmat, bvec): r""" Performs a batched matrix-vector product, with compatible but different batch shapes. This function takes as input `bmat`, containing :math:`n \times n` matrices, and `bvec`, containing length :math:`n` vectors. Both `bmat` and `bvec` may have any number of leading dimensions, which correspond to a batch shape. They are not necessarily assumed to have the same batch shape, just ones which can be broadcasted. """ return torch.matmul(bmat, bvec.unsqueeze(-1)).squeeze(-1) def _batch_mahalanobis(bL, bx): r""" Computes the squared Mahalanobis distance :math:`\mathbf{x}^\top\mathbf{M}^{-1}\mathbf{x}` for a factored :math:`\mathbf{M} = \mathbf{L}\mathbf{L}^\top`. Accepts batches for both bL and bx. They are not necessarily assumed to have the same batch shape, but `bL` one should be able to broadcasted to `bx` one. """ n = bx.size(-1) bx_batch_shape = bx.shape[:-1] # Assume that bL.shape = (i, 1, n, n), bx.shape = (..., i, j, n), # we are going to make bx have shape (..., 1, j, i, 1, n) to apply batched tri.solve bx_batch_dims = len(bx_batch_shape) bL_batch_dims = bL.dim() - 2 outer_batch_dims = bx_batch_dims - bL_batch_dims old_batch_dims = outer_batch_dims + bL_batch_dims new_batch_dims = outer_batch_dims + 2 * bL_batch_dims # Reshape bx with the shape (..., 1, i, j, 1, n) bx_new_shape = bx.shape[:outer_batch_dims] for sL, sx in zip(bL.shape[:-2], bx.shape[outer_batch_dims:-1]): bx_new_shape += (sx // sL, sL) bx_new_shape += (n,) bx = bx.reshape(bx_new_shape) # Permute bx to make it have shape (..., 1, j, i, 1, n) permute_dims = ( list(range(outer_batch_dims)) + list(range(outer_batch_dims, new_batch_dims, 2)) + list(range(outer_batch_dims + 1, new_batch_dims, 2)) + [new_batch_dims] ) bx = bx.permute(permute_dims) flat_L = bL.reshape(-1, n, n) # shape = b x n x n flat_x = bx.reshape(-1, flat_L.size(0), n) # shape = c x b x n flat_x_swap = flat_x.permute(1, 2, 0) # shape = b x n x c M_swap = ( torch.linalg.solve_triangular(flat_L, flat_x_swap, upper=False).pow(2).sum(-2) ) # shape = b x c M = M_swap.t() # shape = c x b # Now we revert the above reshape and permute operators. permuted_M = M.reshape(bx.shape[:-1]) # shape = (..., 1, j, i, 1) permute_inv_dims = list(range(outer_batch_dims)) for i in range(bL_batch_dims): permute_inv_dims += [outer_batch_dims + i, old_batch_dims + i] reshaped_M = permuted_M.permute(permute_inv_dims) # shape = (..., 1, i, j, 1) return reshaped_M.reshape(bx_batch_shape) def _precision_to_scale_tril(P): # Ref: https://nbviewer.jupyter.org/gist/fehiepsi/5ef8e09e61604f10607380467eb82006#Precision-to-scale_tril Lf = torch.linalg.cholesky(torch.flip(P, (-2, -1))) L_inv = torch.transpose(torch.flip(Lf, (-2, -1)), -2, -1) Id = torch.eye(P.shape[-1], dtype=P.dtype, device=P.device) L = torch.linalg.solve_triangular(L_inv, Id, upper=False) return L class MultivariateNormal(Distribution): r""" Creates a multivariate normal (also called Gaussian) distribution parameterized by a mean vector and a covariance matrix. The multivariate normal distribution can be parameterized either in terms of a positive definite covariance matrix :math:`\mathbf{\Sigma}` or a positive definite precision matrix :math:`\mathbf{\Sigma}^{-1}` or a lower-triangular matrix :math:`\mathbf{L}` with positive-valued diagonal entries, such that :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`. This triangular matrix can be obtained via e.g. Cholesky decomposition of the covariance. Example: >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK) >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = MultivariateNormal(torch.zeros(2), torch.eye(2)) >>> m.sample() # normally distributed with mean=`[0,0]` and covariance_matrix=`I` tensor([-0.2102, -0.5429]) Args: loc (Tensor): mean of the distribution covariance_matrix (Tensor): positive-definite covariance matrix precision_matrix (Tensor): positive-definite precision matrix scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal Note: Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or :attr:`scale_tril` can be specified. Using :attr:`scale_tril` will be more efficient: all computations internally are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or :attr:`precision_matrix` is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition. """ arg_constraints = { "loc": constraints.real_vector, "covariance_matrix": constraints.positive_definite, "precision_matrix": constraints.positive_definite, "scale_tril": constraints.lower_cholesky, } support = constraints.real_vector has_rsample = True def __init__( self, loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None, ): if loc.dim() < 1: raise ValueError("loc must be at least one-dimensional.") if (covariance_matrix is not None) + (scale_tril is not None) + ( precision_matrix is not None ) != 1: raise ValueError( "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified." ) if scale_tril is not None: if scale_tril.dim() < 2: raise ValueError( "scale_tril matrix must be at least two-dimensional, " "with optional leading batch dimensions" ) batch_shape = torch.broadcast_shapes(scale_tril.shape[:-2], loc.shape[:-1]) self.scale_tril = scale_tril.expand(batch_shape + (-1, -1)) elif covariance_matrix is not None: if covariance_matrix.dim() < 2: raise ValueError( "covariance_matrix must be at least two-dimensional, " "with optional leading batch dimensions" ) batch_shape = torch.broadcast_shapes( covariance_matrix.shape[:-2], loc.shape[:-1] ) self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1)) else: if precision_matrix.dim() < 2: raise ValueError( "precision_matrix must be at least two-dimensional, " "with optional leading batch dimensions" ) batch_shape = torch.broadcast_shapes( precision_matrix.shape[:-2], loc.shape[:-1] ) self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1)) self.loc = loc.expand(batch_shape + (-1,)) event_shape = self.loc.shape[-1:] super().__init__(batch_shape, event_shape, validate_args=validate_args) if scale_tril is not None: self._unbroadcasted_scale_tril = scale_tril elif covariance_matrix is not None: self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix) else: # precision_matrix is not None self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(MultivariateNormal, _instance) batch_shape = torch.Size(batch_shape) loc_shape = batch_shape + self.event_shape cov_shape = batch_shape + self.event_shape + self.event_shape new.loc = self.loc.expand(loc_shape) new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril if "covariance_matrix" in self.__dict__: new.covariance_matrix = self.covariance_matrix.expand(cov_shape) if "scale_tril" in self.__dict__: new.scale_tril = self.scale_tril.expand(cov_shape) if "precision_matrix" in self.__dict__: new.precision_matrix = self.precision_matrix.expand(cov_shape) super(MultivariateNormal, new).__init__( batch_shape, self.event_shape, validate_args=False ) new._validate_args = self._validate_args return new @lazy_property def scale_tril(self): return self._unbroadcasted_scale_tril.expand( self._batch_shape + self._event_shape + self._event_shape ) @lazy_property def covariance_matrix(self): return torch.matmul( self._unbroadcasted_scale_tril, self._unbroadcasted_scale_tril.mT ).expand(self._batch_shape + self._event_shape + self._event_shape) @lazy_property def precision_matrix(self): return torch.cholesky_inverse(self._unbroadcasted_scale_tril).expand( self._batch_shape + self._event_shape + self._event_shape ) @property def mean(self): return self.loc @property def mode(self): return self.loc @property def variance(self): return ( self._unbroadcasted_scale_tril.pow(2) .sum(-1) .expand(self._batch_shape + self._event_shape) ) def rsample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) return self.loc + _batch_mv(self._unbroadcasted_scale_tril, eps) def log_prob(self, value): if self._validate_args: self._validate_sample(value) diff = value - self.loc M = _batch_mahalanobis(self._unbroadcasted_scale_tril, diff) half_log_det = ( self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) ) return -0.5 * (self._event_shape[0] * math.log(2 * math.pi) + M) - half_log_det def entropy(self): half_log_det = ( self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) ) H = 0.5 * self._event_shape[0] * (1.0 + math.log(2 * math.pi)) + half_log_det if len(self._batch_shape) == 0: return H else: return H.expand(self._batch_shape)