/* pybind11/numpy.h: Basic NumPy support, vectorize() wrapper Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include "detail/common.h" #include "complex.h" #include "gil_safe_call_once.h" #include "pytypes.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(PYBIND11_NUMPY_1_ONLY) && !defined(PYBIND11_INTERNAL_NUMPY_1_ONLY_DETECTED) # error PYBIND11_NUMPY_1_ONLY must be defined before any pybind11 header is included. #endif /* This will be true on all flat address space platforms and allows us to reduce the whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size and dimension types (e.g. shape, strides, indexing), instead of inflicting this upon the library user. Note that NumPy 2 now uses ssize_t for `npy_intp` to simplify this. */ static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t"); static_assert(std::is_signed::value, "Py_intptr_t must be signed"); // We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares) PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) PYBIND11_WARNING_DISABLE_MSVC(4127) class dtype; // Forward declaration class array; // Forward declaration PYBIND11_NAMESPACE_BEGIN(detail) template <> struct handle_type_name { static constexpr auto name = const_name("numpy.dtype"); }; template <> struct handle_type_name { static constexpr auto name = const_name("numpy.ndarray"); }; template struct npy_format_descriptor; /* NumPy 1 proxy (always includes legacy fields) */ struct PyArrayDescr1_Proxy { PyObject_HEAD PyObject *typeobj; char kind; char type; char byteorder; char flags; int type_num; int elsize; int alignment; char *subarray; PyObject *fields; PyObject *names; }; #ifndef PYBIND11_NUMPY_1_ONLY struct PyArrayDescr_Proxy { PyObject_HEAD PyObject *typeobj; char kind; char type; char byteorder; char _former_flags; int type_num; /* Additional fields are NumPy version specific. */ }; #else /* NumPy 1.x only, we can expose all fields */ using PyArrayDescr_Proxy = PyArrayDescr1_Proxy; #endif /* NumPy 2 proxy, including legacy fields */ struct PyArrayDescr2_Proxy { PyObject_HEAD PyObject *typeobj; char kind; char type; char byteorder; char _former_flags; int type_num; std::uint64_t flags; ssize_t elsize; ssize_t alignment; PyObject *metadata; Py_hash_t hash; void *reserved_null[2]; /* The following fields only exist if 0 <= type_num < 2056 */ char *subarray; PyObject *fields; PyObject *names; }; struct PyArray_Proxy { PyObject_HEAD char *data; int nd; ssize_t *dimensions; ssize_t *strides; PyObject *base; PyObject *descr; int flags; }; struct PyVoidScalarObject_Proxy { PyObject_VAR_HEAD char *obval; PyArrayDescr_Proxy *descr; int flags; PyObject *base; }; struct numpy_type_info { PyObject *dtype_ptr; std::string format_str; }; struct numpy_internals { std::unordered_map registered_dtypes; numpy_type_info *get_type_info(const std::type_info &tinfo, bool throw_if_missing = true) { auto it = registered_dtypes.find(std::type_index(tinfo)); if (it != registered_dtypes.end()) { return &(it->second); } if (throw_if_missing) { pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name()); } return nullptr; } template numpy_type_info *get_type_info(bool throw_if_missing = true) { return get_type_info(typeid(typename std::remove_cv::type), throw_if_missing); } }; PYBIND11_NOINLINE void load_numpy_internals(numpy_internals *&ptr) { ptr = &get_or_create_shared_data("_numpy_internals"); } inline numpy_internals &get_numpy_internals() { static numpy_internals *ptr = nullptr; if (!ptr) { load_numpy_internals(ptr); } return *ptr; } PYBIND11_NOINLINE module_ import_numpy_core_submodule(const char *submodule_name) { module_ numpy = module_::import("numpy"); str version_string = numpy.attr("__version__"); module_ numpy_lib = module_::import("numpy.lib"); object numpy_version = numpy_lib.attr("NumpyVersion")(version_string); int major_version = numpy_version.attr("major").cast(); #ifdef PYBIND11_NUMPY_1_ONLY if (major_version >= 2) { throw std::runtime_error( "This extension was built with PYBIND11_NUMPY_1_ONLY defined, " "but NumPy 2 is used in this process. For NumPy2 compatibility, " "this extension needs to be rebuilt without the PYBIND11_NUMPY_1_ONLY define."); } #endif /* `numpy.core` was renamed to `numpy._core` in NumPy 2.0 as it officially became a private module. */ std::string numpy_core_path = major_version >= 2 ? "numpy._core" : "numpy.core"; return module_::import((numpy_core_path + "." + submodule_name).c_str()); } template struct same_size { template using as = bool_constant; }; template constexpr int platform_lookup() { return -1; } // Lookup a type according to its size, and return a value corresponding to the NumPy typenum. template constexpr int platform_lookup(int I, Ints... Is) { return sizeof(Concrete) == sizeof(T) ? I : platform_lookup(Is...); } struct npy_api { enum constants { NPY_ARRAY_C_CONTIGUOUS_ = 0x0001, NPY_ARRAY_F_CONTIGUOUS_ = 0x0002, NPY_ARRAY_OWNDATA_ = 0x0004, NPY_ARRAY_FORCECAST_ = 0x0010, NPY_ARRAY_ENSUREARRAY_ = 0x0040, NPY_ARRAY_ALIGNED_ = 0x0100, NPY_ARRAY_WRITEABLE_ = 0x0400, NPY_BOOL_ = 0, NPY_BYTE_, NPY_UBYTE_, NPY_SHORT_, NPY_USHORT_, NPY_INT_, NPY_UINT_, NPY_LONG_, NPY_ULONG_, NPY_LONGLONG_, NPY_ULONGLONG_, NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_, NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_, NPY_OBJECT_ = 17, NPY_STRING_, NPY_UNICODE_, NPY_VOID_, // Platform-dependent normalization NPY_INT8_ = NPY_BYTE_, NPY_UINT8_ = NPY_UBYTE_, NPY_INT16_ = NPY_SHORT_, NPY_UINT16_ = NPY_USHORT_, // `npy_common.h` defines the integer aliases. In order, it checks: // NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR // and assigns the alias to the first matching size, so we should check in this order. NPY_INT32_ = platform_lookup(NPY_LONG_, NPY_INT_, NPY_SHORT_), NPY_UINT32_ = platform_lookup( NPY_ULONG_, NPY_UINT_, NPY_USHORT_), NPY_INT64_ = platform_lookup(NPY_LONG_, NPY_LONGLONG_, NPY_INT_), NPY_UINT64_ = platform_lookup( NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_), }; unsigned int PyArray_RUNTIME_VERSION_; struct PyArray_Dims { Py_intptr_t *ptr; int len; }; static npy_api &get() { PYBIND11_CONSTINIT static gil_safe_call_once_and_store storage; return storage.call_once_and_store_result(lookup).get_stored(); } bool PyArray_Check_(PyObject *obj) const { return PyObject_TypeCheck(obj, PyArray_Type_) != 0; } bool PyArrayDescr_Check_(PyObject *obj) const { return PyObject_TypeCheck(obj, PyArrayDescr_Type_) != 0; } unsigned int (*PyArray_GetNDArrayCFeatureVersion_)(); PyObject *(*PyArray_DescrFromType_)(int); PyObject *(*PyArray_NewFromDescr_)(PyTypeObject *, PyObject *, int, Py_intptr_t const *, Py_intptr_t const *, void *, int, PyObject *); // Unused. Not removed because that affects ABI of the class. PyObject *(*PyArray_DescrNewFromType_)(int); int (*PyArray_CopyInto_)(PyObject *, PyObject *); PyObject *(*PyArray_NewCopy_)(PyObject *, int); PyTypeObject *PyArray_Type_; PyTypeObject *PyVoidArrType_Type_; PyTypeObject *PyArrayDescr_Type_; PyObject *(*PyArray_DescrFromScalar_)(PyObject *); PyObject *(*PyArray_FromAny_)(PyObject *, PyObject *, int, int, int, PyObject *); int (*PyArray_DescrConverter_)(PyObject *, PyObject **); bool (*PyArray_EquivTypes_)(PyObject *, PyObject *); #ifdef PYBIND11_NUMPY_1_ONLY int (*PyArray_GetArrayParamsFromObject_)(PyObject *, PyObject *, unsigned char, PyObject **, int *, Py_intptr_t *, PyObject **, PyObject *); #endif PyObject *(*PyArray_Squeeze_)(PyObject *); // Unused. Not removed because that affects ABI of the class. int (*PyArray_SetBaseObject_)(PyObject *, PyObject *); PyObject *(*PyArray_Resize_)(PyObject *, PyArray_Dims *, int, int); PyObject *(*PyArray_Newshape_)(PyObject *, PyArray_Dims *, int); PyObject *(*PyArray_View_)(PyObject *, PyObject *, PyObject *); private: enum functions { API_PyArray_GetNDArrayCFeatureVersion = 211, API_PyArray_Type = 2, API_PyArrayDescr_Type = 3, API_PyVoidArrType_Type = 39, API_PyArray_DescrFromType = 45, API_PyArray_DescrFromScalar = 57, API_PyArray_FromAny = 69, API_PyArray_Resize = 80, // CopyInto was slot 82 and 50 was effectively an alias. NumPy 2 removed 82. API_PyArray_CopyInto = 50, API_PyArray_NewCopy = 85, API_PyArray_NewFromDescr = 94, API_PyArray_DescrNewFromType = 96, API_PyArray_Newshape = 135, API_PyArray_Squeeze = 136, API_PyArray_View = 137, API_PyArray_DescrConverter = 174, API_PyArray_EquivTypes = 182, #ifdef PYBIND11_NUMPY_1_ONLY API_PyArray_GetArrayParamsFromObject = 278, #endif API_PyArray_SetBaseObject = 282 }; static npy_api lookup() { module_ m = detail::import_numpy_core_submodule("multiarray"); auto c = m.attr("_ARRAY_API"); void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), nullptr); if (api_ptr == nullptr) { raise_from(PyExc_SystemError, "FAILURE obtaining numpy _ARRAY_API pointer."); throw error_already_set(); } npy_api api; #define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func]; DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion); api.PyArray_RUNTIME_VERSION_ = api.PyArray_GetNDArrayCFeatureVersion_(); if (api.PyArray_RUNTIME_VERSION_ < 0x7) { pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0"); } DECL_NPY_API(PyArray_Type); DECL_NPY_API(PyVoidArrType_Type); DECL_NPY_API(PyArrayDescr_Type); DECL_NPY_API(PyArray_DescrFromType); DECL_NPY_API(PyArray_DescrFromScalar); DECL_NPY_API(PyArray_FromAny); DECL_NPY_API(PyArray_Resize); DECL_NPY_API(PyArray_CopyInto); DECL_NPY_API(PyArray_NewCopy); DECL_NPY_API(PyArray_NewFromDescr); DECL_NPY_API(PyArray_DescrNewFromType); DECL_NPY_API(PyArray_Newshape); DECL_NPY_API(PyArray_Squeeze); DECL_NPY_API(PyArray_View); DECL_NPY_API(PyArray_DescrConverter); DECL_NPY_API(PyArray_EquivTypes); #ifdef PYBIND11_NUMPY_1_ONLY DECL_NPY_API(PyArray_GetArrayParamsFromObject); #endif DECL_NPY_API(PyArray_SetBaseObject); #undef DECL_NPY_API return api; } }; inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast(ptr); } inline const PyArray_Proxy *array_proxy(const void *ptr) { return reinterpret_cast(ptr); } inline PyArrayDescr_Proxy *array_descriptor_proxy(PyObject *ptr) { return reinterpret_cast(ptr); } inline const PyArrayDescr_Proxy *array_descriptor_proxy(const PyObject *ptr) { return reinterpret_cast(ptr); } inline const PyArrayDescr1_Proxy *array_descriptor1_proxy(const PyObject *ptr) { return reinterpret_cast(ptr); } inline const PyArrayDescr2_Proxy *array_descriptor2_proxy(const PyObject *ptr) { return reinterpret_cast(ptr); } inline bool check_flags(const void *ptr, int flag) { return (flag == (array_proxy(ptr)->flags & flag)); } template struct is_std_array : std::false_type {}; template struct is_std_array> : std::true_type {}; template struct is_complex : std::false_type {}; template struct is_complex> : std::true_type {}; template struct array_info_scalar { using type = T; static constexpr bool is_array = false; static constexpr bool is_empty = false; static constexpr auto extents = const_name(""); static void append_extents(list & /* shape */) {} }; // Computes underlying type and a comma-separated list of extents for array // types (any mix of std::array and built-in arrays). An array of char is // treated as scalar because it gets special handling. template struct array_info : array_info_scalar {}; template struct array_info> { using type = typename array_info::type; static constexpr bool is_array = true; static constexpr bool is_empty = (N == 0) || array_info::is_empty; static constexpr size_t extent = N; // appends the extents to shape static void append_extents(list &shape) { shape.append(N); array_info::append_extents(shape); } static constexpr auto extents = const_name::is_array>( ::pybind11::detail::concat(const_name(), array_info::extents), const_name()); }; // For numpy we have special handling for arrays of characters, so we don't include // the size in the array extents. template struct array_info : array_info_scalar {}; template struct array_info> : array_info_scalar> {}; template struct array_info : array_info> {}; template using remove_all_extents_t = typename array_info::type; template using is_pod_struct = all_of, // since we're accessing directly in memory // we need a standard layout type #if defined(__GLIBCXX__) \ && (__GLIBCXX__ < 20150422 || __GLIBCXX__ == 20150426 || __GLIBCXX__ == 20150623 \ || __GLIBCXX__ == 20150626 || __GLIBCXX__ == 20160803) // libstdc++ < 5 (including versions 4.8.5, 4.9.3 and 4.9.4 which were released after // 5) don't implement is_trivially_copyable, so approximate it std::is_trivially_destructible, satisfies_any_of, #else std::is_trivially_copyable, #endif satisfies_none_of>; // Replacement for std::is_pod (deprecated in C++20) template using is_pod = all_of, std::is_trivial>; template ssize_t byte_offset_unsafe(const Strides &) { return 0; } template ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) { return i * strides[Dim] + byte_offset_unsafe(strides, index...); } /** * Proxy class providing unsafe, unchecked const access to array data. This is constructed through * the `unchecked()` method of `array` or the `unchecked()` method of `array_t`. `Dims` * will be -1 for dimensions determined at runtime. */ template class unchecked_reference { protected: static constexpr bool Dynamic = Dims < 0; const unsigned char *data_; // Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to // make large performance gains on big, nested loops, but requires compile-time dimensions conditional_t> shape_, strides_; const ssize_t dims_; friend class pybind11::array; // Constructor for compile-time dimensions: template unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t) : data_{reinterpret_cast(data)}, dims_{Dims} { for (size_t i = 0; i < (size_t) dims_; i++) { shape_[i] = shape[i]; strides_[i] = strides[i]; } } // Constructor for runtime dimensions: template unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t dims) : data_{reinterpret_cast(data)}, shape_{shape}, strides_{strides}, dims_{dims} {} public: /** * Unchecked const reference access to data at the given indices. For a compile-time known * number of dimensions, this requires the correct number of arguments; for run-time * dimensionality, this is not checked (and so is up to the caller to use safely). */ template const T &operator()(Ix... index) const { static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic, "Invalid number of indices for unchecked array reference"); return *reinterpret_cast(data_ + byte_offset_unsafe(strides_, ssize_t(index)...)); } /** * Unchecked const reference access to data; this operator only participates if the reference * is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`. */ template > const T &operator[](ssize_t index) const { return operator()(index); } /// Pointer access to the data at the given indices. template const T *data(Ix... ix) const { return &operator()(ssize_t(ix)...); } /// Returns the item size, i.e. sizeof(T) constexpr static ssize_t itemsize() { return sizeof(T); } /// Returns the shape (i.e. size) of dimension `dim` ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; } /// Returns the number of dimensions of the array ssize_t ndim() const { return dims_; } /// Returns the total number of elements in the referenced array, i.e. the product of the /// shapes template enable_if_t size() const { return std::accumulate( shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies()); } template enable_if_t size() const { return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies()); } /// Returns the total number of bytes used by the referenced data. Note that the actual span /// in memory may be larger if the referenced array has non-contiguous strides (e.g. for a /// slice). ssize_t nbytes() const { return size() * itemsize(); } }; template class unchecked_mutable_reference : public unchecked_reference { friend class pybind11::array; using ConstBase = unchecked_reference; using ConstBase::ConstBase; using ConstBase::Dynamic; public: // Bring in const-qualified versions from base class using ConstBase::operator(); using ConstBase::operator[]; /// Mutable, unchecked access to data at the given indices. template T &operator()(Ix... index) { static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic, "Invalid number of indices for unchecked array reference"); return const_cast(ConstBase::operator()(index...)); } /** * Mutable, unchecked access data at the given index; this operator only participates if the * reference is to a 1-dimensional array (or has runtime dimensions). When present, this is * exactly equivalent to `obj(index)`. */ template > T &operator[](ssize_t index) { return operator()(index); } /// Mutable pointer access to the data at the given indices. template T *mutable_data(Ix... ix) { return &operator()(ssize_t(ix)...); } }; template struct type_caster> { static_assert(Dim == 0 && Dim > 0 /* always fail */, "unchecked array proxy object is not castable"); }; template struct type_caster> : type_caster> {}; PYBIND11_NAMESPACE_END(detail) class dtype : public object { public: PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_) explicit dtype(const buffer_info &info) { dtype descr(_dtype_from_pep3118()(pybind11::str(info.format))); // If info.itemsize == 0, use the value calculated from the format string m_ptr = descr.strip_padding(info.itemsize != 0 ? info.itemsize : descr.itemsize()) .release() .ptr(); } explicit dtype(const pybind11::str &format) : dtype(from_args(format)) {} explicit dtype(const std::string &format) : dtype(pybind11::str(format)) {} explicit dtype(const char *format) : dtype(pybind11::str(format)) {} dtype(list names, list formats, list offsets, ssize_t itemsize) { dict args; args["names"] = std::move(names); args["formats"] = std::move(formats); args["offsets"] = std::move(offsets); args["itemsize"] = pybind11::int_(itemsize); m_ptr = from_args(args).release().ptr(); } /// Return dtype for the given typenum (one of the NPY_TYPES). /// https://numpy.org/devdocs/reference/c-api/array.html#c.PyArray_DescrFromType explicit dtype(int typenum) : object(detail::npy_api::get().PyArray_DescrFromType_(typenum), stolen_t{}) { if (m_ptr == nullptr) { throw error_already_set(); } } /// This is essentially the same as calling numpy.dtype(args) in Python. static dtype from_args(const object &args) { PyObject *ptr = nullptr; if ((detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) == 0) || !ptr) { throw error_already_set(); } return reinterpret_steal(ptr); } /// Return dtype associated with a C++ type. template static dtype of() { return detail::npy_format_descriptor::type>::dtype(); } /// Size of the data type in bytes. #ifdef PYBIND11_NUMPY_1_ONLY ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; } #else ssize_t itemsize() const { if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { return detail::array_descriptor1_proxy(m_ptr)->elsize; } return detail::array_descriptor2_proxy(m_ptr)->elsize; } #endif /// Returns true for structured data types. #ifdef PYBIND11_NUMPY_1_ONLY bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; } #else bool has_fields() const { if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { return detail::array_descriptor1_proxy(m_ptr)->names != nullptr; } const auto *proxy = detail::array_descriptor2_proxy(m_ptr); if (proxy->type_num < 0 || proxy->type_num >= 2056) { return false; } return proxy->names != nullptr; } #endif /// Single-character code for dtype's kind. /// For example, floating point types are 'f' and integral types are 'i'. char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; } /// Single-character for dtype's type. /// For example, ``float`` is 'f', ``double`` 'd', ``int`` 'i', and ``long`` 'l'. char char_() const { // Note: The signature, `dtype::char_` follows the naming of NumPy's // public Python API (i.e., ``dtype.char``), rather than its internal // C API (``PyArray_Descr::type``). return detail::array_descriptor_proxy(m_ptr)->type; } /// type number of dtype. int num() const { // Note: The signature, `dtype::num` follows the naming of NumPy's public // Python API (i.e., ``dtype.num``), rather than its internal // C API (``PyArray_Descr::type_num``). return detail::array_descriptor_proxy(m_ptr)->type_num; } /// Single character for byteorder char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; } /// Alignment of the data type #ifdef PYBIND11_NUMPY_1_ONLY int alignment() const { return detail::array_descriptor_proxy(m_ptr)->alignment; } #else ssize_t alignment() const { if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { return detail::array_descriptor1_proxy(m_ptr)->alignment; } return detail::array_descriptor2_proxy(m_ptr)->alignment; } #endif /// Flags for the array descriptor #ifdef PYBIND11_NUMPY_1_ONLY char flags() const { return detail::array_descriptor_proxy(m_ptr)->flags; } #else std::uint64_t flags() const { if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { return (unsigned char) detail::array_descriptor1_proxy(m_ptr)->flags; } return detail::array_descriptor2_proxy(m_ptr)->flags; } #endif private: static object &_dtype_from_pep3118() { PYBIND11_CONSTINIT static gil_safe_call_once_and_store storage; return storage .call_once_and_store_result([]() { return detail::import_numpy_core_submodule("_internal") .attr("_dtype_from_pep3118"); }) .get_stored(); } dtype strip_padding(ssize_t itemsize) { // Recursively strip all void fields with empty names that are generated for // padding fields (as of NumPy v1.11). if (!has_fields()) { return *this; } struct field_descr { pybind11::str name; object format; pybind11::int_ offset; field_descr(pybind11::str &&name, object &&format, pybind11::int_ &&offset) : name{std::move(name)}, format{std::move(format)}, offset{std::move(offset)} {}; }; auto field_dict = attr("fields").cast(); std::vector field_descriptors; field_descriptors.reserve(field_dict.size()); for (auto field : field_dict.attr("items")()) { auto spec = field.cast(); auto name = spec[0].cast(); auto spec_fo = spec[1].cast(); auto format = spec_fo[0].cast(); auto offset = spec_fo[1].cast(); if ((len(name) == 0u) && format.kind() == 'V') { continue; } field_descriptors.emplace_back( std::move(name), format.strip_padding(format.itemsize()), std::move(offset)); } std::sort(field_descriptors.begin(), field_descriptors.end(), [](const field_descr &a, const field_descr &b) { return a.offset.cast() < b.offset.cast(); }); list names, formats, offsets; for (auto &descr : field_descriptors) { names.append(std::move(descr.name)); formats.append(std::move(descr.format)); offsets.append(std::move(descr.offset)); } return dtype(std::move(names), std::move(formats), std::move(offsets), itemsize); } }; class array : public buffer { public: PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array) enum { c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_, f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_, forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_ }; array() : array(0, static_cast(nullptr)) {} using ShapeContainer = detail::any_container; using StridesContainer = detail::any_container; // Constructs an array taking shape/strides from arbitrary container types array(const pybind11::dtype &dt, ShapeContainer shape, StridesContainer strides, const void *ptr = nullptr, handle base = handle()) { if (strides->empty()) { *strides = detail::c_strides(*shape, dt.itemsize()); } auto ndim = shape->size(); if (ndim != strides->size()) { pybind11_fail("NumPy: shape ndim doesn't match strides ndim"); } auto descr = dt; int flags = 0; if (base && ptr) { if (isinstance(base)) { /* Copy flags from base (except ownership bit) */ flags = reinterpret_borrow(base).flags() & ~detail::npy_api::NPY_ARRAY_OWNDATA_; } else { /* Writable by default, easy to downgrade later on if needed */ flags = detail::npy_api::NPY_ARRAY_WRITEABLE_; } } auto &api = detail::npy_api::get(); auto tmp = reinterpret_steal(api.PyArray_NewFromDescr_( api.PyArray_Type_, descr.release().ptr(), (int) ndim, // Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1) reinterpret_cast(shape->data()), reinterpret_cast(strides->data()), const_cast(ptr), flags, nullptr)); if (!tmp) { throw error_already_set(); } if (ptr) { if (base) { api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr()); } else { tmp = reinterpret_steal( api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */)); } } m_ptr = tmp.release().ptr(); } array(const pybind11::dtype &dt, ShapeContainer shape, const void *ptr = nullptr, handle base = handle()) : array(dt, std::move(shape), {}, ptr, base) {} template ::value && !std::is_same::value>> array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle()) : array(dt, {{count}}, ptr, base) {} template array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle()) : array(pybind11::dtype::of(), std::move(shape), std::move(strides), ptr, base) {} template array(ShapeContainer shape, const T *ptr, handle base = handle()) : array(std::move(shape), {}, ptr, base) {} template explicit array(ssize_t count, const T *ptr, handle base = handle()) : array({count}, {}, ptr, base) {} explicit array(const buffer_info &info, handle base = handle()) : array(pybind11::dtype(info), info.shape, info.strides, info.ptr, base) {} /// Array descriptor (dtype) pybind11::dtype dtype() const { return reinterpret_borrow(detail::array_proxy(m_ptr)->descr); } /// Total number of elements ssize_t size() const { return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies()); } /// Byte size of a single element ssize_t itemsize() const { return dtype().itemsize(); } /// Total number of bytes ssize_t nbytes() const { return size() * itemsize(); } /// Number of dimensions ssize_t ndim() const { return detail::array_proxy(m_ptr)->nd; } /// Base object object base() const { return reinterpret_borrow(detail::array_proxy(m_ptr)->base); } /// Dimensions of the array const ssize_t *shape() const { return detail::array_proxy(m_ptr)->dimensions; } /// Dimension along a given axis ssize_t shape(ssize_t dim) const { if (dim >= ndim()) { fail_dim_check(dim, "invalid axis"); } return shape()[dim]; } /// Strides of the array const ssize_t *strides() const { return detail::array_proxy(m_ptr)->strides; } /// Stride along a given axis ssize_t strides(ssize_t dim) const { if (dim >= ndim()) { fail_dim_check(dim, "invalid axis"); } return strides()[dim]; } /// Return the NumPy array flags int flags() const { return detail::array_proxy(m_ptr)->flags; } /// If set, the array is writeable (otherwise the buffer is read-only) bool writeable() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_); } /// If set, the array owns the data (will be freed when the array is deleted) bool owndata() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_); } /// Pointer to the contained data. If index is not provided, points to the /// beginning of the buffer. May throw if the index would lead to out of bounds access. template const void *data(Ix... index) const { return static_cast(detail::array_proxy(m_ptr)->data + offset_at(index...)); } /// Mutable pointer to the contained data. If index is not provided, points to the /// beginning of the buffer. May throw if the index would lead to out of bounds access. /// May throw if the array is not writeable. template void *mutable_data(Ix... index) { check_writeable(); return static_cast(detail::array_proxy(m_ptr)->data + offset_at(index...)); } /// Byte offset from beginning of the array to a given index (full or partial). /// May throw if the index would lead to out of bounds access. template ssize_t offset_at(Ix... index) const { if ((ssize_t) sizeof...(index) > ndim()) { fail_dim_check(sizeof...(index), "too many indices for an array"); } return byte_offset(ssize_t(index)...); } ssize_t offset_at() const { return 0; } /// Item count from beginning of the array to a given index (full or partial). /// May throw if the index would lead to out of bounds access. template ssize_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); } /** * Returns a proxy object that provides access to the array's data without bounds or * dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with * care: the array must not be destroyed or reshaped for the duration of the returned object, * and the caller must take care not to access invalid dimensions or dimension indices. */ template detail::unchecked_mutable_reference mutable_unchecked() & { if (Dims >= 0 && ndim() != Dims) { throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) + "; expected " + std::to_string(Dims)); } return detail::unchecked_mutable_reference( mutable_data(), shape(), strides(), ndim()); } /** * Returns a proxy object that provides const access to the array's data without bounds or * dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the * underlying array have the `writable` flag. Use with care: the array must not be destroyed * or reshaped for the duration of the returned object, and the caller must take care not to * access invalid dimensions or dimension indices. */ template detail::unchecked_reference unchecked() const & { if (Dims >= 0 && ndim() != Dims) { throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) + "; expected " + std::to_string(Dims)); } return detail::unchecked_reference(data(), shape(), strides(), ndim()); } /// Return a new view with all of the dimensions of length 1 removed array squeeze() { auto &api = detail::npy_api::get(); return reinterpret_steal(api.PyArray_Squeeze_(m_ptr)); } /// Resize array to given shape /// If refcheck is true and more that one reference exist to this array /// then resize will succeed only if it makes a reshape, i.e. original size doesn't change void resize(ShapeContainer new_shape, bool refcheck = true) { detail::npy_api::PyArray_Dims d = {// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1) reinterpret_cast(new_shape->data()), int(new_shape->size())}; // try to resize, set ordering param to -1 cause it's not used anyway auto new_array = reinterpret_steal( detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1)); if (!new_array) { throw error_already_set(); } if (isinstance(new_array)) { *this = std::move(new_array); } } /// Optional `order` parameter omitted, to be added as needed. array reshape(ShapeContainer new_shape) { detail::npy_api::PyArray_Dims d = {reinterpret_cast(new_shape->data()), int(new_shape->size())}; auto new_array = reinterpret_steal(detail::npy_api::get().PyArray_Newshape_(m_ptr, &d, 0)); if (!new_array) { throw error_already_set(); } return new_array; } /// Create a view of an array in a different data type. /// This function may fundamentally reinterpret the data in the array. /// It is the responsibility of the caller to ensure that this is safe. /// Only supports the `dtype` argument, the `type` argument is omitted, /// to be added as needed. array view(const std::string &dtype) { auto &api = detail::npy_api::get(); auto new_view = reinterpret_steal(api.PyArray_View_( m_ptr, dtype::from_args(pybind11::str(dtype)).release().ptr(), nullptr)); if (!new_view) { throw error_already_set(); } return new_view; } /// Ensure that the argument is a NumPy array /// In case of an error, nullptr is returned and the Python error is cleared. static array ensure(handle h, int ExtraFlags = 0) { auto result = reinterpret_steal(raw_array(h.ptr(), ExtraFlags)); if (!result) { PyErr_Clear(); } return result; } protected: template friend struct detail::npy_format_descriptor; void fail_dim_check(ssize_t dim, const std::string &msg) const { throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim()) + ')'); } template ssize_t byte_offset(Ix... index) const { check_dimensions(index...); return detail::byte_offset_unsafe(strides(), ssize_t(index)...); } void check_writeable() const { if (!writeable()) { throw std::domain_error("array is not writeable"); } } template void check_dimensions(Ix... index) const { check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...); } void check_dimensions_impl(ssize_t, const ssize_t *) const {} template void check_dimensions_impl(ssize_t axis, const ssize_t *shape, ssize_t i, Ix... index) const { if (i >= *shape) { throw index_error(std::string("index ") + std::to_string(i) + " is out of bounds for axis " + std::to_string(axis) + " with size " + std::to_string(*shape)); } check_dimensions_impl(axis + 1, shape + 1, index...); } /// Create array from any object -- always returns a new reference static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) { if (ptr == nullptr) { set_error(PyExc_ValueError, "cannot create a pybind11::array from a nullptr"); return nullptr; } return detail::npy_api::get().PyArray_FromAny_( ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); } }; template class array_t : public array { private: struct private_ctor {}; // Delegating constructor needed when both moving and accessing in the same constructor array_t(private_ctor, ShapeContainer &&shape, StridesContainer &&strides, const T *ptr, handle base) : array(std::move(shape), std::move(strides), ptr, base) {} public: static_assert(!detail::array_info::is_array, "Array types cannot be used with array_t"); using value_type = T; array_t() : array(0, static_cast(nullptr)) {} array_t(handle h, borrowed_t) : array(h, borrowed_t{}) {} array_t(handle h, stolen_t) : array(h, stolen_t{}) {} PYBIND11_DEPRECATED("Use array_t::ensure() instead") array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) { if (!m_ptr) { PyErr_Clear(); } if (!is_borrowed) { Py_XDECREF(h.ptr()); } } // NOLINTNEXTLINE(google-explicit-constructor) array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) { if (!m_ptr) { throw error_already_set(); } } explicit array_t(const buffer_info &info, handle base = handle()) : array(info, base) {} array_t(ShapeContainer shape, StridesContainer strides, const T *ptr = nullptr, handle base = handle()) : array(std::move(shape), std::move(strides), ptr, base) {} explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle()) : array_t(private_ctor{}, std::move(shape), (ExtraFlags & f_style) != 0 ? detail::f_strides(*shape, itemsize()) : detail::c_strides(*shape, itemsize()), ptr, base) {} explicit array_t(ssize_t count, const T *ptr = nullptr, handle base = handle()) : array({count}, {}, ptr, base) {} constexpr ssize_t itemsize() const { return sizeof(T); } template ssize_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); } template const T *data(Ix... index) const { return static_cast(array::data(index...)); } template T *mutable_data(Ix... index) { return static_cast(array::mutable_data(index...)); } // Reference to element at a given index template const T &at(Ix... index) const { if ((ssize_t) sizeof...(index) != ndim()) { fail_dim_check(sizeof...(index), "index dimension mismatch"); } return *(static_cast(array::data()) + byte_offset(ssize_t(index)...) / itemsize()); } // Mutable reference to element at a given index template T &mutable_at(Ix... index) { if ((ssize_t) sizeof...(index) != ndim()) { fail_dim_check(sizeof...(index), "index dimension mismatch"); } return *(static_cast(array::mutable_data()) + byte_offset(ssize_t(index)...) / itemsize()); } /** * Returns a proxy object that provides access to the array's data without bounds or * dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with * care: the array must not be destroyed or reshaped for the duration of the returned object, * and the caller must take care not to access invalid dimensions or dimension indices. */ template detail::unchecked_mutable_reference mutable_unchecked() & { return array::mutable_unchecked(); } /** * Returns a proxy object that provides const access to the array's data without bounds or * dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the * underlying array have the `writable` flag. Use with care: the array must not be destroyed * or reshaped for the duration of the returned object, and the caller must take care not to * access invalid dimensions or dimension indices. */ template detail::unchecked_reference unchecked() const & { return array::unchecked(); } /// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert /// it). In case of an error, nullptr is returned and the Python error is cleared. static array_t ensure(handle h) { auto result = reinterpret_steal(raw_array_t(h.ptr())); if (!result) { PyErr_Clear(); } return result; } static bool check_(handle h) { const auto &api = detail::npy_api::get(); return api.PyArray_Check_(h.ptr()) && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, dtype::of().ptr()) && detail::check_flags(h.ptr(), ExtraFlags & (array::c_style | array::f_style)); } protected: /// Create array from any object -- always returns a new reference static PyObject *raw_array_t(PyObject *ptr) { if (ptr == nullptr) { set_error(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr"); return nullptr; } return detail::npy_api::get().PyArray_FromAny_(ptr, dtype::of().release().ptr(), 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); } }; template struct format_descriptor::value>> { static std::string format() { return detail::npy_format_descriptor::type>::format(); } }; template struct format_descriptor { static std::string format() { return std::to_string(N) + 's'; } }; template struct format_descriptor> { static std::string format() { return std::to_string(N) + 's'; } }; template struct format_descriptor::value>> { static std::string format() { return format_descriptor< typename std::remove_cv::type>::type>::format(); } }; template struct format_descriptor::is_array>> { static std::string format() { using namespace detail; static constexpr auto extents = const_name("(") + array_info::extents + const_name(")"); return extents.text + format_descriptor>::format(); } }; PYBIND11_NAMESPACE_BEGIN(detail) template struct pyobject_caster> { using type = array_t; bool load(handle src, bool convert) { if (!convert && !type::check_(src)) { return false; } value = type::ensure(src); return static_cast(value); } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name); }; template struct compare_buffer_info::value>> { static bool compare(const buffer_info &b) { return npy_api::get().PyArray_EquivTypes_(dtype::of().ptr(), dtype(b).ptr()); } }; template struct npy_format_descriptor_name; template struct npy_format_descriptor_name::value>> { static constexpr auto name = const_name::value>( const_name("bool"), const_name::value>("numpy.int", "numpy.uint") + const_name()); }; template struct npy_format_descriptor_name::value>> { static constexpr auto name = const_name < std::is_same::value || std::is_same::value || std::is_same::value || std::is_same::value > (const_name("numpy.float") + const_name(), const_name("numpy.longdouble")); }; template struct npy_format_descriptor_name::value>> { static constexpr auto name = const_name < std::is_same::value || std::is_same::value || std::is_same::value || std::is_same::value > (const_name("numpy.complex") + const_name(), const_name("numpy.longcomplex")); }; template struct npy_format_descriptor< T, enable_if_t::value>> : npy_format_descriptor_name { private: // NB: the order here must match the one in common.h constexpr static const int values[15] = {npy_api::NPY_BOOL_, npy_api::NPY_BYTE_, npy_api::NPY_UBYTE_, npy_api::NPY_INT16_, npy_api::NPY_UINT16_, npy_api::NPY_INT32_, npy_api::NPY_UINT32_, npy_api::NPY_INT64_, npy_api::NPY_UINT64_, npy_api::NPY_FLOAT_, npy_api::NPY_DOUBLE_, npy_api::NPY_LONGDOUBLE_, npy_api::NPY_CFLOAT_, npy_api::NPY_CDOUBLE_, npy_api::NPY_CLONGDOUBLE_}; public: static constexpr int value = values[detail::is_fmt_numeric::index]; static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); } }; template struct npy_format_descriptor::value>> { static constexpr auto name = const_name("object"); static constexpr int value = npy_api::NPY_OBJECT_; static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); } }; #define PYBIND11_DECL_CHAR_FMT \ static constexpr auto name = const_name("S") + const_name(); \ static pybind11::dtype dtype() { \ return pybind11::dtype(std::string("S") + std::to_string(N)); \ } template struct npy_format_descriptor { PYBIND11_DECL_CHAR_FMT }; template struct npy_format_descriptor> { PYBIND11_DECL_CHAR_FMT }; #undef PYBIND11_DECL_CHAR_FMT template struct npy_format_descriptor::is_array>> { private: using base_descr = npy_format_descriptor::type>; public: static_assert(!array_info::is_empty, "Zero-sized arrays are not supported"); static constexpr auto name = const_name("(") + array_info::extents + const_name(")") + base_descr::name; static pybind11::dtype dtype() { list shape; array_info::append_extents(shape); return pybind11::dtype::from_args( pybind11::make_tuple(base_descr::dtype(), std::move(shape))); } }; template struct npy_format_descriptor::value>> { private: using base_descr = npy_format_descriptor::type>; public: static constexpr auto name = base_descr::name; static pybind11::dtype dtype() { return base_descr::dtype(); } }; struct field_descriptor { const char *name; ssize_t offset; ssize_t size; std::string format; dtype descr; }; PYBIND11_NOINLINE void register_structured_dtype(any_container fields, const std::type_info &tinfo, ssize_t itemsize, bool (*direct_converter)(PyObject *, void *&)) { auto &numpy_internals = get_numpy_internals(); if (numpy_internals.get_type_info(tinfo, false)) { pybind11_fail("NumPy: dtype is already registered"); } // Use ordered fields because order matters as of NumPy 1.14: // https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays std::vector ordered_fields(std::move(fields)); std::sort( ordered_fields.begin(), ordered_fields.end(), [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; }); list names, formats, offsets; for (auto &field : ordered_fields) { if (!field.descr) { pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ " + tinfo.name()); } names.append(pybind11::str(field.name)); formats.append(field.descr); offsets.append(pybind11::int_(field.offset)); } auto *dtype_ptr = pybind11::dtype(std::move(names), std::move(formats), std::move(offsets), itemsize) .release() .ptr(); // There is an existing bug in NumPy (as of v1.11): trailing bytes are // not encoded explicitly into the format string. This will supposedly // get fixed in v1.12; for further details, see these: // - https://github.com/numpy/numpy/issues/7797 // - https://github.com/numpy/numpy/pull/7798 // Because of this, we won't use numpy's logic to generate buffer format // strings and will just do it ourselves. ssize_t offset = 0; std::ostringstream oss; // mark the structure as unaligned with '^', because numpy and C++ don't // always agree about alignment (particularly for complex), and we're // explicitly listing all our padding. This depends on none of the fields // overriding the endianness. Putting the ^ in front of individual fields // isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049 oss << "^T{"; for (auto &field : ordered_fields) { if (field.offset > offset) { oss << (field.offset - offset) << 'x'; } oss << field.format << ':' << field.name << ':'; offset = field.offset + field.size; } if (itemsize > offset) { oss << (itemsize - offset) << 'x'; } oss << '}'; auto format_str = oss.str(); // Smoke test: verify that NumPy properly parses our buffer format string auto &api = npy_api::get(); auto arr = array(buffer_info(nullptr, itemsize, format_str, 1)); if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) { pybind11_fail("NumPy: invalid buffer descriptor!"); } auto tindex = std::type_index(tinfo); numpy_internals.registered_dtypes[tindex] = {dtype_ptr, std::move(format_str)}; get_internals().direct_conversions[tindex].push_back(direct_converter); } template struct npy_format_descriptor { static_assert(is_pod_struct::value, "Attempt to use a non-POD or unimplemented POD type as a numpy dtype"); static constexpr auto name = make_caster::name; static pybind11::dtype dtype() { return reinterpret_borrow(dtype_ptr()); } static std::string format() { static auto format_str = get_numpy_internals().get_type_info(true)->format_str; return format_str; } static void register_dtype(any_container fields) { register_structured_dtype(std::move(fields), typeid(typename std::remove_cv::type), sizeof(T), &direct_converter); } private: static PyObject *dtype_ptr() { static PyObject *ptr = get_numpy_internals().get_type_info(true)->dtype_ptr; return ptr; } static bool direct_converter(PyObject *obj, void *&value) { auto &api = npy_api::get(); if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) { return false; } if (auto descr = reinterpret_steal(api.PyArray_DescrFromScalar_(obj))) { if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) { value = ((PyVoidScalarObject_Proxy *) obj)->obval; return true; } } return false; } }; #ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code) # define PYBIND11_NUMPY_DTYPE(Type, ...) ((void) 0) # define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void) 0) #else # define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \ ::pybind11::detail::field_descriptor { \ Name, offsetof(T, Field), sizeof(decltype(std::declval().Field)), \ ::pybind11::format_descriptor().Field)>::format(), \ ::pybind11::detail::npy_format_descriptor< \ decltype(std::declval().Field)>::dtype() \ } // Extract name, offset and format descriptor for a struct field # define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field) // The main idea of this macro is borrowed from https://github.com/swansontec/map-macro // (C) William Swanson, Paul Fultz # define PYBIND11_EVAL0(...) __VA_ARGS__ # define PYBIND11_EVAL1(...) PYBIND11_EVAL0(PYBIND11_EVAL0(PYBIND11_EVAL0(__VA_ARGS__))) # define PYBIND11_EVAL2(...) PYBIND11_EVAL1(PYBIND11_EVAL1(PYBIND11_EVAL1(__VA_ARGS__))) # define PYBIND11_EVAL3(...) PYBIND11_EVAL2(PYBIND11_EVAL2(PYBIND11_EVAL2(__VA_ARGS__))) # define PYBIND11_EVAL4(...) PYBIND11_EVAL3(PYBIND11_EVAL3(PYBIND11_EVAL3(__VA_ARGS__))) # define PYBIND11_EVAL(...) PYBIND11_EVAL4(PYBIND11_EVAL4(PYBIND11_EVAL4(__VA_ARGS__))) # define PYBIND11_MAP_END(...) # define PYBIND11_MAP_OUT # define PYBIND11_MAP_COMMA , # define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END # define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT # define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0(test, next, 0) # define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1(PYBIND11_MAP_GET_END test, next) # if defined(_MSC_VER) \ && !defined(__clang__) // MSVC is not as eager to expand macros, hence this workaround # define PYBIND11_MAP_LIST_NEXT1(test, next) \ PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)) # else # define PYBIND11_MAP_LIST_NEXT1(test, next) \ PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0) # endif # define PYBIND11_MAP_LIST_NEXT(test, next) \ PYBIND11_MAP_LIST_NEXT1(PYBIND11_MAP_GET_END test, next) # define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \ f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST1)(f, t, peek, __VA_ARGS__) # define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \ f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST0)(f, t, peek, __VA_ARGS__) // PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ... # define PYBIND11_MAP_LIST(f, t, ...) \ PYBIND11_EVAL(PYBIND11_MAP_LIST1(f, t, __VA_ARGS__, (), 0)) # define PYBIND11_NUMPY_DTYPE(Type, ...) \ ::pybind11::detail::npy_format_descriptor::register_dtype( \ ::std::vector<::pybind11::detail::field_descriptor>{ \ PYBIND11_MAP_LIST(PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)}) # if defined(_MSC_VER) && !defined(__clang__) # define PYBIND11_MAP2_LIST_NEXT1(test, next) \ PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)) # else # define PYBIND11_MAP2_LIST_NEXT1(test, next) \ PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0) # endif # define PYBIND11_MAP2_LIST_NEXT(test, next) \ PYBIND11_MAP2_LIST_NEXT1(PYBIND11_MAP_GET_END test, next) # define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \ f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST1)(f, t, peek, __VA_ARGS__) # define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \ f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST0)(f, t, peek, __VA_ARGS__) // PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ... # define PYBIND11_MAP2_LIST(f, t, ...) \ PYBIND11_EVAL(PYBIND11_MAP2_LIST1(f, t, __VA_ARGS__, (), 0)) # define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \ ::pybind11::detail::npy_format_descriptor::register_dtype( \ ::std::vector<::pybind11::detail::field_descriptor>{ \ PYBIND11_MAP2_LIST(PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)}) #endif // __CLION_IDE__ class common_iterator { public: using container_type = std::vector; using value_type = container_type::value_type; using size_type = container_type::size_type; common_iterator() : m_strides() {} common_iterator(void *ptr, const container_type &strides, const container_type &shape) : p_ptr(reinterpret_cast(ptr)), m_strides(strides.size()) { m_strides.back() = static_cast(strides.back()); for (size_type i = m_strides.size() - 1; i != 0; --i) { size_type j = i - 1; auto s = static_cast(shape[i]); m_strides[j] = strides[j] + m_strides[i] - strides[i] * s; } } void increment(size_type dim) { p_ptr += m_strides[dim]; } void *data() const { return p_ptr; } private: char *p_ptr{nullptr}; container_type m_strides; }; template class multi_array_iterator { public: using container_type = std::vector; multi_array_iterator(const std::array &buffers, const container_type &shape) : m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() { // Manual copy to avoid conversion warning if using std::copy for (size_t i = 0; i < shape.size(); ++i) { m_shape[i] = shape[i]; } container_type strides(shape.size()); for (size_t i = 0; i < N; ++i) { init_common_iterator(buffers[i], shape, m_common_iterator[i], strides); } } multi_array_iterator &operator++() { for (size_t j = m_index.size(); j != 0; --j) { size_t i = j - 1; if (++m_index[i] != m_shape[i]) { increment_common_iterator(i); break; } m_index[i] = 0; } return *this; } template T *data() const { return reinterpret_cast(m_common_iterator[K].data()); } private: using common_iter = common_iterator; void init_common_iterator(const buffer_info &buffer, const container_type &shape, common_iter &iterator, container_type &strides) { auto buffer_shape_iter = buffer.shape.rbegin(); auto buffer_strides_iter = buffer.strides.rbegin(); auto shape_iter = shape.rbegin(); auto strides_iter = strides.rbegin(); while (buffer_shape_iter != buffer.shape.rend()) { if (*shape_iter == *buffer_shape_iter) { *strides_iter = *buffer_strides_iter; } else { *strides_iter = 0; } ++buffer_shape_iter; ++buffer_strides_iter; ++shape_iter; ++strides_iter; } std::fill(strides_iter, strides.rend(), 0); iterator = common_iter(buffer.ptr, strides, shape); } void increment_common_iterator(size_t dim) { for (auto &iter : m_common_iterator) { iter.increment(dim); } } container_type m_shape; container_type m_index; std::array m_common_iterator; }; enum class broadcast_trivial { non_trivial, c_trivial, f_trivial }; // Populates the shape and number of dimensions for the set of buffers. Returns a // broadcast_trivial enum value indicating whether the broadcast is "trivial"--that is, has each // buffer being either a singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous // (`f_trivial`) storage buffer; returns `non_trivial` otherwise. template broadcast_trivial broadcast(const std::array &buffers, ssize_t &ndim, std::vector &shape) { ndim = std::accumulate( buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) { return std::max(res, buf.ndim); }); shape.clear(); shape.resize((size_t) ndim, 1); // Figure out the output size, and make sure all input arrays conform (i.e. are either size 1 // or the full size). for (size_t i = 0; i < N; ++i) { auto res_iter = shape.rbegin(); auto end = buffers[i].shape.rend(); for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end; ++shape_iter, ++res_iter) { const auto &dim_size_in = *shape_iter; auto &dim_size_out = *res_iter; // Each input dimension can either be 1 or `n`, but `n` values must match across // buffers if (dim_size_out == 1) { dim_size_out = dim_size_in; } else if (dim_size_in != 1 && dim_size_in != dim_size_out) { pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!"); } } } bool trivial_broadcast_c = true; bool trivial_broadcast_f = true; for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) { if (buffers[i].size == 1) { continue; } // Require the same number of dimensions: if (buffers[i].ndim != ndim) { return broadcast_trivial::non_trivial; } // Require all dimensions be full-size: if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) { return broadcast_trivial::non_trivial; } // Check for C contiguity (but only if previous inputs were also C contiguous) if (trivial_broadcast_c) { ssize_t expect_stride = buffers[i].itemsize; auto end = buffers[i].shape.crend(); for (auto shape_iter = buffers[i].shape.crbegin(), stride_iter = buffers[i].strides.crbegin(); trivial_broadcast_c && shape_iter != end; ++shape_iter, ++stride_iter) { if (expect_stride == *stride_iter) { expect_stride *= *shape_iter; } else { trivial_broadcast_c = false; } } } // Check for Fortran contiguity (if previous inputs were also F contiguous) if (trivial_broadcast_f) { ssize_t expect_stride = buffers[i].itemsize; auto end = buffers[i].shape.cend(); for (auto shape_iter = buffers[i].shape.cbegin(), stride_iter = buffers[i].strides.cbegin(); trivial_broadcast_f && shape_iter != end; ++shape_iter, ++stride_iter) { if (expect_stride == *stride_iter) { expect_stride *= *shape_iter; } else { trivial_broadcast_f = false; } } } } return trivial_broadcast_c ? broadcast_trivial::c_trivial : trivial_broadcast_f ? broadcast_trivial::f_trivial : broadcast_trivial::non_trivial; } template struct vectorize_arg { static_assert(!std::is_rvalue_reference::value, "Functions with rvalue reference arguments cannot be vectorized"); // The wrapped function gets called with this type: using call_type = remove_reference_t; // Is this a vectorized argument? static constexpr bool vectorize = satisfies_any_of::value && satisfies_none_of::value && (!std::is_reference::value || (std::is_lvalue_reference::value && std::is_const::value)); // Accept this type: an array for vectorized types, otherwise the type as-is: using type = conditional_t, array::forcecast>, T>; }; // py::vectorize when a return type is present template struct vectorize_returned_array { using Type = array_t; static Type create(broadcast_trivial trivial, const std::vector &shape) { if (trivial == broadcast_trivial::f_trivial) { return array_t(shape); } return array_t(shape); } static Return *mutable_data(Type &array) { return array.mutable_data(); } static Return call(Func &f, Args &...args) { return f(args...); } static void call(Return *out, size_t i, Func &f, Args &...args) { out[i] = f(args...); } }; // py::vectorize when a return type is not present template struct vectorize_returned_array { using Type = none; static Type create(broadcast_trivial, const std::vector &) { return none(); } static void *mutable_data(Type &) { return nullptr; } static detail::void_type call(Func &f, Args &...args) { f(args...); return {}; } static void call(void *, size_t, Func &f, Args &...args) { f(args...); } }; template struct vectorize_helper { // NVCC for some reason breaks if NVectorized is private #ifdef __CUDACC__ public: #else private: #endif static constexpr size_t N = sizeof...(Args); static constexpr size_t NVectorized = constexpr_sum(vectorize_arg::vectorize...); static_assert( NVectorized >= 1, "pybind11::vectorize(...) requires a function with at least one vectorizable argument"); public: template ::type>::value>> explicit vectorize_helper(T &&f) : f(std::forward(f)) {} object operator()(typename vectorize_arg::type... args) { return run(args..., make_index_sequence(), select_indices::vectorize...>(), make_index_sequence()); } private: remove_reference_t f; // Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling // with "/permissive-" flag when arg_call_types is manually inlined. using arg_call_types = std::tuple::call_type...>; template using param_n_t = typename std::tuple_element::type; using returned_array = vectorize_returned_array; // Runs a vectorized function given arguments tuple and three index sequences: // - Index is the full set of 0 ... (N-1) argument indices; // - VIndex is the subset of argument indices with vectorized parameters, letting us access // vectorized arguments (anything not in this sequence is passed through) // - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that // we can store vectorized buffer_infos in an array (argument VIndex has its buffer at // index BIndex in the array). template object run(typename vectorize_arg::type &...args, index_sequence i_seq, index_sequence vi_seq, index_sequence bi_seq) { // Pointers to values the function was called with; the vectorized ones set here will start // out as array_t pointers, but they will be changed them to T pointers before we make // call the wrapped function. Non-vectorized pointers are left as-is. std::array params{{&args...}}; // The array of `buffer_info`s of vectorized arguments: std::array buffers{ {reinterpret_cast(params[VIndex])->request()...}}; /* Determine dimensions parameters of output array */ ssize_t nd = 0; std::vector shape(0); auto trivial = broadcast(buffers, nd, shape); auto ndim = (size_t) nd; size_t size = std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies()); // If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e. // not wrapped in an array). if (size == 1 && ndim == 0) { PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr); return cast( returned_array::call(f, *reinterpret_cast *>(params[Index])...)); } auto result = returned_array::create(trivial, shape); PYBIND11_WARNING_PUSH #ifdef PYBIND11_DETECTED_CLANG_WITH_MISLEADING_CALL_STD_MOVE_EXPLICITLY_WARNING PYBIND11_WARNING_DISABLE_CLANG("-Wreturn-std-move") #endif if (size == 0) { return result; } /* Call the function */ auto *mutable_data = returned_array::mutable_data(result); if (trivial == broadcast_trivial::non_trivial) { apply_broadcast(buffers, params, mutable_data, size, shape, i_seq, vi_seq, bi_seq); } else { apply_trivial(buffers, params, mutable_data, size, i_seq, vi_seq, bi_seq); } return result; PYBIND11_WARNING_POP } template void apply_trivial(std::array &buffers, std::array ¶ms, Return *out, size_t size, index_sequence, index_sequence, index_sequence) { // Initialize an array of mutable byte references and sizes with references set to the // appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size // (except for singletons, which get an increment of 0). std::array, NVectorized> vecparams{ {std::pair( reinterpret_cast(params[VIndex] = buffers[BIndex].ptr), buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t))...}}; for (size_t i = 0; i < size; ++i) { returned_array::call( out, i, f, *reinterpret_cast *>(params[Index])...); for (auto &x : vecparams) { x.first += x.second; } } } template void apply_broadcast(std::array &buffers, std::array ¶ms, Return *out, size_t size, const std::vector &output_shape, index_sequence, index_sequence, index_sequence) { multi_array_iterator input_iter(buffers, output_shape); for (size_t i = 0; i < size; ++i, ++input_iter) { PYBIND11_EXPAND_SIDE_EFFECTS((params[VIndex] = input_iter.template data())); returned_array::call( out, i, f, *reinterpret_cast *>(std::get(params))...); } } }; template vectorize_helper vectorize_extractor(const Func &f, Return (*)(Args...)) { return detail::vectorize_helper(f); } template struct handle_type_name> { static constexpr auto name = const_name("numpy.ndarray[") + npy_format_descriptor::name + const_name("]"); }; PYBIND11_NAMESPACE_END(detail) // Vanilla pointer vectorizer: template detail::vectorize_helper vectorize(Return (*f)(Args...)) { return detail::vectorize_helper(f); } // lambda vectorizer: template ::value, int> = 0> auto vectorize(Func &&f) -> decltype(detail::vectorize_extractor(std::forward(f), (detail::function_signature_t *) nullptr)) { return detail::vectorize_extractor(std::forward(f), (detail::function_signature_t *) nullptr); } // Vectorize a class method (non-const): template ())), Return, Class *, Args...>> Helper vectorize(Return (Class::*f)(Args...)) { return Helper(std::mem_fn(f)); } // Vectorize a class method (const): template ())), Return, const Class *, Args...>> Helper vectorize(Return (Class::*f)(Args...) const) { return Helper(std::mem_fn(f)); } PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)