""" Note [ONNX operators that are added/updated from opset 7 to opset 8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ New operators: Expand Updated operators: Min, Max, Sum, Mean: supports multidirectional broadcasting. MaxPool: added optional indices output. Scan """ import functools import warnings from torch.onnx import symbolic_helper, symbolic_opset9 as opset9 from torch.onnx._internal import jit_utils, registration _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=7) block_listed_operators = ( "scan", "expand", "expand_as", "meshgrid", "adaptive_max_pool1d", "adaptive_max_pool2d", "adaptive_max_pool3d", "max_pool1d_with_indices", "max_pool2d_with_indices", "max_pool3d_with_indices", ) # NOTE: max, min, sum, mean: broadcasting is not supported in opset 7. # torch.max (same for torch.min) actually has two interfaces smashed together: # torch.max(x, dim, keepdim) and torch.max(x, y) @_onnx_symbolic("aten::max") def max(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None): # torch.max(input, other) if keepdim is None and dim_or_y is not None: warnings.warn( "Multidirectional broadcasting is not supported in opset 7. " "This might cause the onnx model to be incorrect, if inputs to max operators " "have different shapes" ) return opset9.max(g, self, dim_or_y, keepdim) @_onnx_symbolic("aten::min") def min(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None): # torch.min(input, other) if keepdim is None and dim_or_y is not None: warnings.warn( "Multidirectional broadcasting is not supported in opset 7. " "This might cause the onnx model to be incorrect, if inputs to min operators " "have different shapes" ) return opset9.min(g, self, dim_or_y, keepdim) for block_listed_op in block_listed_operators: _onnx_symbolic(f"aten::{block_listed_op}")( symbolic_helper._block_list_in_opset(block_listed_op) )