import torch # Pack pairs of int4 values into int8, in row major order; first int4 # value goes into lower order bits, and second int4 value into higher # order bits of resulting int8 value. def pack_int4_to_int8(weight): assert weight.dim() == 2 assert weight.shape[1] % 2 == 0 assert weight.dtype == torch.int8 return ((weight[:, 1::2] & 0xF) << 4) | (weight[:, 0::2] & 0xF) # Unpack quandruples of bits in int8 values into int4 values, in row # major order; lower 4 bits go into first int4 value goes, and upper 4 # bits go into second int4 value. def unpack_int8_to_int4(weight): assert weight.dim() == 2 assert weight.dtype == torch.int8 return torch.stack((weight & 0xF, (weight >> 4) & 0xF), dim=2).view( weight.shape[0], 2 * weight.shape[1] ) # Transpose the weight matrix, and then reorder its elements according # to underlying requirements of CUTLASS library, so that it could be # used for CUTLASS-based mixed datatypes linear operation. def quantized_weight_reorder_for_mixed_dtypes_linear_cutlass( weight, dtypeq, transpose=False ): assert weight.dim() == 2 assert weight.dtype == torch.int8 assert dtypeq == torch.int8 or dtypeq == torch.quint4x2 assert weight.device.type == "cuda" device = weight.device # subbyte_transpose if not transpose: if dtypeq == torch.int8: outp = weight.T elif dtypeq == torch.quint4x2: outp = pack_int4_to_int8(unpack_int8_to_int4(weight.view(torch.int8)).T) else: outp = weight ncols, nrows = outp.shape # type: ignore[possibly-undefined] assert nrows % (32 if dtypeq == torch.quint4x2 else 64) == 0 assert ncols % 64 == 0 # permute_B_rows_for_mixed_gemm # (permute cols actually, as transpose is applied first here) if dtypeq == torch.quint4x2: cols_permuted = ( torch.tensor( [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], device=device, ) + (torch.arange(0, nrows // 16, device=device).reshape(-1, 1) * 16).expand( nrows // 16, 16 ) ).view(-1) else: cols_permuted = ( torch.tensor( [0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15], device=device, ) + (torch.arange(0, nrows // 16, device=device).reshape(-1, 1) * 16).expand( nrows // 16, 16 ) ).view(-1) outp = outp.index_copy(1, cols_permuted, outp) # interleave_column_major_tensor magic0 = 4 if dtypeq == torch.quint4x2 else 2 magic1 = 32 // magic0 tmp0 = ( (torch.arange(0, ncols // magic0, device=device) * (nrows // 4 * magic0)) .view(-1, 1) .repeat(1, nrows // 4 * magic0) .view(-1) ) tmp1 = ( (torch.arange(0, nrows // 4 // magic1, device=device) * (magic0 * magic1)) .view(-1, 1) .repeat(1, magic1) .view(-1) .repeat(ncols) ) tmp2 = ( (torch.arange(0, magic0, device=device) * magic1) .view(-1, 1) .repeat(1, nrows // 4) .view(-1) .repeat(ncols // magic0) ) tmp3 = torch.arange(0, magic1, device=device).repeat(nrows // 4 * ncols // magic1) outp_offsets = tmp0 + tmp1 + tmp2 + tmp3 tmp = outp.view(-1).view(torch.int32) outp = torch.zeros_like(tmp) outp.scatter_(0, outp_offsets, tmp) outp = outp.view(weight.dtype) # add_bias_and_interleave_quantized_tensor_inplace tmp = outp.view(-1) outp = torch.empty_like(tmp) if dtypeq == torch.int8: tmp = (tmp.to(torch.int) + 128).to(tmp.dtype) outp[0::4] = tmp[0::4] outp[1::4] = tmp[2::4] outp[2::4] = tmp[1::4] outp[3::4] = tmp[3::4] elif dtypeq == torch.quint4x2: tmp0 = ((tmp & 0xF) + 8) & 0xF tmp0 = (tmp0[1::2] << 4) | tmp0[0::2] tmp1 = (((tmp >> 4) & 0xF) + 8) & 0xF tmp1 = (tmp1[1::2] << 4) | tmp1[0::2] outp[0::4] = tmp0[0::2] outp[1::4] = tmp0[1::2] outp[2::4] = tmp1[0::2] outp[3::4] = tmp1[1::2] if dtypeq == torch.quint4x2: nrows *= 2 ncols //= 2 return outp.view(nrows, ncols).view(torch.uint8)