"""Wrapper for adding time aware observations to environment observation.""" import numpy as np import gym from gym.spaces import Box class TimeAwareObservation(gym.ObservationWrapper): """Augment the observation with the current time step in the episode. The observation space of the wrapped environment is assumed to be a flat :class:`Box`. In particular, pixel observations are not supported. This wrapper will append the current timestep within the current episode to the observation. Example: >>> import gym >>> env = gym.make('CartPole-v1') >>> env = TimeAwareObservation(env) >>> env.reset() array([ 0.03810719, 0.03522411, 0.02231044, -0.01088205, 0. ]) >>> env.step(env.action_space.sample())[0] array([ 0.03881167, -0.16021058, 0.0220928 , 0.28875574, 1. ]) """ def __init__(self, env: gym.Env): """Initialize :class:`TimeAwareObservation` that requires an environment with a flat :class:`Box` observation space. Args: env: The environment to apply the wrapper """ super().__init__(env) assert isinstance(env.observation_space, Box) assert env.observation_space.dtype == np.float32 low = np.append(self.observation_space.low, 0.0) high = np.append(self.observation_space.high, np.inf) self.observation_space = Box(low, high, dtype=np.float32) self.is_vector_env = getattr(env, "is_vector_env", False) def observation(self, observation): """Adds to the observation with the current time step. Args: observation: The observation to add the time step to Returns: The observation with the time step appended to """ return np.append(observation, self.t) def step(self, action): """Steps through the environment, incrementing the time step. Args: action: The action to take Returns: The environment's step using the action. """ self.t += 1 return super().step(action) def reset(self, **kwargs): """Reset the environment setting the time to zero. Args: **kwargs: Kwargs to apply to env.reset() Returns: The reset environment """ self.t = 0 return super().reset(**kwargs)