"""Laplacian matrix of graphs. """ import networkx as nx from networkx.utils import not_implemented_for __all__ = [ "laplacian_matrix", "normalized_laplacian_matrix", "total_spanning_tree_weight", "directed_laplacian_matrix", "directed_combinatorial_laplacian_matrix", ] @not_implemented_for("directed") @nx._dispatch(edge_attrs="weight") def laplacian_matrix(G, nodelist=None, weight="weight"): """Returns the Laplacian matrix of G. The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the diagonal matrix of node degrees. Parameters ---------- G : graph A NetworkX graph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- L : SciPy sparse array The Laplacian matrix of G. Notes ----- For MultiGraph, the edges weights are summed. See Also -------- :func:`~networkx.convert_matrix.to_numpy_array` normalized_laplacian_matrix :func:`~networkx.linalg.spectrum.laplacian_spectrum` Examples -------- For graphs with multiple connected components, L is permutation-similar to a block diagonal matrix where each block is the respective Laplacian matrix for each component. >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)]) >>> print(nx.laplacian_matrix(G).toarray()) [[ 1 -1 0 0 0] [-1 2 -1 0 0] [ 0 -1 1 0 0] [ 0 0 0 1 -1] [ 0 0 0 -1 1]] """ import scipy as sp if nodelist is None: nodelist = list(G) A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr") n, m = A.shape # TODO: rm csr_array wrapper when spdiags can produce arrays D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr")) return D - A @not_implemented_for("directed") @nx._dispatch(edge_attrs="weight") def normalized_laplacian_matrix(G, nodelist=None, weight="weight"): r"""Returns the normalized Laplacian matrix of G. The normalized graph Laplacian is the matrix .. math:: N = D^{-1/2} L D^{-1/2} where `L` is the graph Laplacian and `D` is the diagonal matrix of node degrees [1]_. Parameters ---------- G : graph A NetworkX graph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- N : SciPy sparse array The normalized Laplacian matrix of G. Notes ----- For MultiGraph, the edges weights are summed. See :func:`to_numpy_array` for other options. If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is the adjacency matrix [2]_. See Also -------- laplacian_matrix normalized_laplacian_spectrum References ---------- .. [1] Fan Chung-Graham, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, Number 92, 1997. .. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98, March 2007. """ import numpy as np import scipy as sp if nodelist is None: nodelist = list(G) A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr") n, m = A.shape diags = A.sum(axis=1) # TODO: rm csr_array wrapper when spdiags can produce arrays D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, m, n, format="csr")) L = D - A with np.errstate(divide="ignore"): diags_sqrt = 1.0 / np.sqrt(diags) diags_sqrt[np.isinf(diags_sqrt)] = 0 # TODO: rm csr_array wrapper when spdiags can produce arrays DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, m, n, format="csr")) return DH @ (L @ DH) @nx._dispatch(edge_attrs="weight") def total_spanning_tree_weight(G, weight=None): """ Returns the total weight of all spanning trees of `G`. Kirchoff's Tree Matrix Theorem states that the determinant of any cofactor of the Laplacian matrix of a graph is the number of spanning trees in the graph. For a weighted Laplacian matrix, it is the sum across all spanning trees of the multiplicative weight of each tree. That is, the weight of each tree is the product of its edge weights. Parameters ---------- G : NetworkX Graph The graph to use Kirchhoff's theorem on. weight : string or None The key for the edge attribute holding the edge weight. If `None`, then each edge is assumed to have a weight of 1 and this function returns the total number of spanning trees in `G`. Returns ------- float The sum of the total multiplicative weights for all spanning trees in `G` """ import numpy as np G_laplacian = nx.laplacian_matrix(G, weight=weight).toarray() # Determinant ignoring first row and column return abs(np.linalg.det(G_laplacian[1:, 1:])) ############################################################################### # Code based on work from https://github.com/bjedwards @not_implemented_for("undirected") @not_implemented_for("multigraph") @nx._dispatch(edge_attrs="weight") def directed_laplacian_matrix( G, nodelist=None, weight="weight", walk_type=None, alpha=0.95 ): r"""Returns the directed Laplacian matrix of G. The graph directed Laplacian is the matrix .. math:: L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} ) / 2 where `I` is the identity matrix, `P` is the transition matrix of the graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_. Depending on the value of walk_type, `P` can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank). Parameters ---------- G : DiGraph A NetworkX graph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. walk_type : string or None, optional (default=None) If None, `P` is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank' alpha : real (1 - alpha) is the teleportation probability used with pagerank Returns ------- L : NumPy matrix Normalized Laplacian of G. Notes ----- Only implemented for DiGraphs See Also -------- laplacian_matrix References ---------- .. [1] Fan Chung (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9(1), 2005 """ import numpy as np import scipy as sp # NOTE: P has type ndarray if walk_type=="pagerank", else csr_array P = _transition_matrix( G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha ) n, m = P.shape evals, evecs = sp.sparse.linalg.eigs(P.T, k=1) v = evecs.flatten().real p = v / v.sum() # p>=0 by Perron-Frobenius Thm. Use abs() to fix roundoff across zero gh-6865 sqrtp = np.sqrt(np.abs(p)) Q = ( # TODO: rm csr_array wrapper when spdiags creates arrays sp.sparse.csr_array(sp.sparse.spdiags(sqrtp, 0, n, n)) @ P # TODO: rm csr_array wrapper when spdiags creates arrays @ sp.sparse.csr_array(sp.sparse.spdiags(1.0 / sqrtp, 0, n, n)) ) # NOTE: This could be sparsified for the non-pagerank cases I = np.identity(len(G)) return I - (Q + Q.T) / 2.0 @not_implemented_for("undirected") @not_implemented_for("multigraph") @nx._dispatch(edge_attrs="weight") def directed_combinatorial_laplacian_matrix( G, nodelist=None, weight="weight", walk_type=None, alpha=0.95 ): r"""Return the directed combinatorial Laplacian matrix of G. The graph directed combinatorial Laplacian is the matrix .. math:: L = \Phi - (\Phi P + P^T \Phi) / 2 where `P` is the transition matrix of the graph and `\Phi` a matrix with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_. Depending on the value of walk_type, `P` can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank). Parameters ---------- G : DiGraph A NetworkX graph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. walk_type : string or None, optional (default=None) If None, `P` is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank' alpha : real (1 - alpha) is the teleportation probability used with pagerank Returns ------- L : NumPy matrix Combinatorial Laplacian of G. Notes ----- Only implemented for DiGraphs See Also -------- laplacian_matrix References ---------- .. [1] Fan Chung (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9(1), 2005 """ import scipy as sp P = _transition_matrix( G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha ) n, m = P.shape evals, evecs = sp.sparse.linalg.eigs(P.T, k=1) v = evecs.flatten().real p = v / v.sum() # NOTE: could be improved by not densifying # TODO: Rm csr_array wrapper when spdiags array creation becomes available Phi = sp.sparse.csr_array(sp.sparse.spdiags(p, 0, n, n)).toarray() return Phi - (Phi @ P + P.T @ Phi) / 2.0 def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95): """Returns the transition matrix of G. This is a row stochastic giving the transition probabilities while performing a random walk on the graph. Depending on the value of walk_type, P can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank). Parameters ---------- G : DiGraph A NetworkX graph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. walk_type : string or None, optional (default=None) If None, `P` is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank' alpha : real (1 - alpha) is the teleportation probability used with pagerank Returns ------- P : numpy.ndarray transition matrix of G. Raises ------ NetworkXError If walk_type not specified or alpha not in valid range """ import numpy as np import scipy as sp if walk_type is None: if nx.is_strongly_connected(G): if nx.is_aperiodic(G): walk_type = "random" else: walk_type = "lazy" else: walk_type = "pagerank" A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float) n, m = A.shape if walk_type in ["random", "lazy"]: # TODO: Rm csr_array wrapper when spdiags array creation becomes available DI = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / A.sum(axis=1), 0, n, n)) if walk_type == "random": P = DI @ A else: # TODO: Rm csr_array wrapper when identity array creation becomes available I = sp.sparse.csr_array(sp.sparse.identity(n)) P = (I + DI @ A) / 2.0 elif walk_type == "pagerank": if not (0 < alpha < 1): raise nx.NetworkXError("alpha must be between 0 and 1") # this is using a dense representation. NOTE: This should be sparsified! A = A.toarray() # add constant to dangling nodes' row A[A.sum(axis=1) == 0, :] = 1 / n # normalize A = A / A.sum(axis=1)[np.newaxis, :].T P = alpha * A + (1 - alpha) / n else: raise nx.NetworkXError("walk_type must be random, lazy, or pagerank") return P