import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class PusherEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 20, } def __init__(self, **kwargs): utils.EzPickle.__init__(self, **kwargs) observation_space = Box(low=-np.inf, high=np.inf, shape=(23,), dtype=np.float64) MuJocoPyEnv.__init__( self, "pusher.xml", 5, observation_space=observation_space, **kwargs ) def step(self, a): vec_1 = self.get_body_com("object") - self.get_body_com("tips_arm") vec_2 = self.get_body_com("object") - self.get_body_com("goal") reward_near = -np.linalg.norm(vec_1) reward_dist = -np.linalg.norm(vec_2) reward_ctrl = -np.square(a).sum() reward = reward_dist + 0.1 * reward_ctrl + 0.5 * reward_near self.do_simulation(a, self.frame_skip) if self.render_mode == "human": self.render() ob = self._get_obs() return ( ob, reward, False, False, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl), ) def viewer_setup(self): assert self.viewer is not None self.viewer.cam.trackbodyid = -1 self.viewer.cam.distance = 4.0 def reset_model(self): qpos = self.init_qpos self.goal_pos = np.asarray([0, 0]) while True: self.cylinder_pos = np.concatenate( [ self.np_random.uniform(low=-0.3, high=0, size=1), self.np_random.uniform(low=-0.2, high=0.2, size=1), ] ) if np.linalg.norm(self.cylinder_pos - self.goal_pos) > 0.17: break qpos[-4:-2] = self.cylinder_pos qpos[-2:] = self.goal_pos qvel = self.init_qvel + self.np_random.uniform( low=-0.005, high=0.005, size=self.model.nv ) qvel[-4:] = 0 self.set_state(qpos, qvel) return self._get_obs() def _get_obs(self): return np.concatenate( [ self.sim.data.qpos.flat[:7], self.sim.data.qvel.flat[:7], self.get_body_com("tips_arm"), self.get_body_com("object"), self.get_body_com("goal"), ] )