from __future__ import print_function from ..libmp.backend import xrange from .functions import defun, defun_wrapped, defun_static @defun def stieltjes(ctx, n, a=1): n = ctx.convert(n) a = ctx.convert(a) if n < 0: return ctx.bad_domain("Stieltjes constants defined for n >= 0") if hasattr(ctx, "stieltjes_cache"): stieltjes_cache = ctx.stieltjes_cache else: stieltjes_cache = ctx.stieltjes_cache = {} if a == 1: if n == 0: return +ctx.euler if n in stieltjes_cache: prec, s = stieltjes_cache[n] if prec >= ctx.prec: return +s mag = 1 def f(x): xa = x/a v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1) return ctx._re(v) / mag orig = ctx.prec try: # Normalize integrand by approx. magnitude to # speed up quadrature (which uses absolute error) if n > 50: ctx.prec = 20 mag = ctx.quad(f, [0,ctx.inf], maxdegree=3) ctx.prec = orig + 10 + int(n**0.5) s = ctx.quad(f, [0,ctx.inf], maxdegree=20) v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag finally: ctx.prec = orig if a == 1 and ctx.isint(n): stieltjes_cache[n] = (ctx.prec, v) return +v @defun_wrapped def siegeltheta(ctx, t, derivative=0): d = int(derivative) if (t == ctx.inf or t == ctx.ninf): if d < 2: if t == ctx.ninf and d == 0: return ctx.ninf return ctx.inf else: return ctx.zero if d == 0: if ctx._im(t): # XXX: cancellation occurs a = ctx.loggamma(0.25+0.5j*t) b = ctx.loggamma(0.25-0.5j*t) return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b) else: if ctx.isinf(t): return t return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t if d > 0: a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t) b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t) if ctx._im(t): if d == 1: return -0.5*ctx.log(ctx.pi)+0.25*(a+b) else: return 0.25*(a+b) else: if d == 1: return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b)) else: return ctx._re(0.25*(a+b)) @defun_wrapped def grampoint(ctx, n): # asymptotic expansion, from # http://mathworld.wolfram.com/GramPoint.html g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e))) return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g) @defun_wrapped def siegelz(ctx, t, **kwargs): d = int(kwargs.get("derivative", 0)) t = ctx.convert(t) t1 = ctx._re(t) t2 = ctx._im(t) prec = ctx.prec try: if abs(t1) > 500*prec and t2**2 < t1: v = ctx.rs_z(t, d) if ctx._is_real_type(t): return ctx._re(v) return v except NotImplementedError: pass ctx.prec += 21 e1 = ctx.expj(ctx.siegeltheta(t)) z = ctx.zeta(0.5+ctx.j*t) if d == 0: v = e1*z ctx.prec=prec if ctx._is_real_type(t): return ctx._re(v) return +v z1 = ctx.zeta(0.5+ctx.j*t, derivative=1) theta1 = ctx.siegeltheta(t, derivative=1) if d == 1: v = ctx.j*e1*(z1+z*theta1) ctx.prec=prec if ctx._is_real_type(t): return ctx._re(v) return +v z2 = ctx.zeta(0.5+ctx.j*t, derivative=2) theta2 = ctx.siegeltheta(t, derivative=2) comb1 = theta1**2-ctx.j*theta2 if d == 2: def terms(): return [2*z1*theta1, z2, z*comb1] v = ctx.sum_accurately(terms, 1) v = -e1*v ctx.prec = prec if ctx._is_real_type(t): return ctx._re(v) return +v ctx.prec += 10 z3 = ctx.zeta(0.5+ctx.j*t, derivative=3) theta3 = ctx.siegeltheta(t, derivative=3) comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3 if d == 3: def terms(): return [3*theta1*z2, 3*z1*comb1, z3+z*comb2] v = ctx.sum_accurately(terms, 1) v = -ctx.j*e1*v ctx.prec = prec if ctx._is_real_type(t): return ctx._re(v) return +v z4 = ctx.zeta(0.5+ctx.j*t, derivative=4) theta4 = ctx.siegeltheta(t, derivative=4) def terms(): return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2, -4*theta1*theta3, ctx.j*theta4] comb3 = ctx.sum_accurately(terms, 1) if d == 4: def terms(): return [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3, 4*z1*comb2, z4, z*comb3] v = ctx.sum_accurately(terms, 1) v = e1*v ctx.prec = prec if ctx._is_real_type(t): return ctx._re(v) return +v if d > 4: h = lambda x: ctx.siegelz(x, derivative=4) return ctx.diff(h, t, n=d-4) _zeta_zeros = [ 14.134725142,21.022039639,25.010857580,30.424876126,32.935061588, 37.586178159,40.918719012,43.327073281,48.005150881,49.773832478, 52.970321478,56.446247697,59.347044003,60.831778525,65.112544048, 67.079810529,69.546401711,72.067157674,75.704690699,77.144840069, 79.337375020,82.910380854,84.735492981,87.425274613,88.809111208, 92.491899271,94.651344041,95.870634228,98.831194218,101.317851006, 103.725538040,105.446623052,107.168611184,111.029535543,111.874659177, 114.320220915,116.226680321,118.790782866,121.370125002,122.946829294, 124.256818554,127.516683880,129.578704200,131.087688531,133.497737203, 134.756509753,138.116042055,139.736208952,141.123707404,143.111845808, 146.000982487,147.422765343,150.053520421,150.925257612,153.024693811, 156.112909294,157.597591818,158.849988171,161.188964138,163.030709687, 165.537069188,167.184439978,169.094515416,169.911976479,173.411536520, 174.754191523,176.441434298,178.377407776,179.916484020,182.207078484, 184.874467848,185.598783678,187.228922584,189.416158656,192.026656361, 193.079726604,195.265396680,196.876481841,198.015309676,201.264751944, 202.493594514,204.189671803,205.394697202,207.906258888,209.576509717, 211.690862595,213.347919360,214.547044783,216.169538508,219.067596349, 220.714918839,221.430705555,224.007000255,224.983324670,227.421444280, 229.337413306,231.250188700,231.987235253,233.693404179,236.524229666, ] def _load_zeta_zeros(url): import urllib d = urllib.urlopen(url) L = [float(x) for x in d.readlines()] # Sanity check assert round(L[0]) == 14 _zeta_zeros[:] = L @defun def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'): n = int(n) if n < 0: return ctx.zetazero(-n).conjugate() if n == 0: raise ValueError("n must be nonzero") if n > len(_zeta_zeros) and n <= 100000: _load_zeta_zeros(url) if n > len(_zeta_zeros): raise NotImplementedError("n too large for zetazeros") return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1])) @defun_wrapped def riemannr(ctx, x): if x == 0: return ctx.zero # Check if a simple asymptotic estimate is accurate enough if abs(x) > 1000: a = ctx.li(x) b = 0.5*ctx.li(ctx.sqrt(x)) if abs(b) < abs(a)*ctx.eps: return a if abs(x) < 0.01: # XXX ctx.prec += int(-ctx.log(abs(x),2)) # Sum Gram's series s = t = ctx.one u = ctx.ln(x) k = 1 while abs(t) > abs(s)*ctx.eps: t = t * u / k s += t / (k * ctx._zeta_int(k+1)) k += 1 return s @defun_static def primepi(ctx, x): x = int(x) if x < 2: return 0 return len(ctx.list_primes(x)) # TODO: fix the interface wrt contexts @defun_wrapped def primepi2(ctx, x): x = int(x) if x < 2: return ctx._iv.zero if x < 2657: return ctx._iv.mpf(ctx.primepi(x)) mid = ctx.li(x) # Schoenfeld's estimate for x >= 2657, assuming RH err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d') a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d') b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u') return ctx._iv.mpf([a,b]) @defun_wrapped def primezeta(ctx, s): if ctx.isnan(s): return s if ctx.re(s) <= 0: raise ValueError("prime zeta function defined only for re(s) > 0") if s == 1: return ctx.inf if s == 0.5: return ctx.mpc(ctx.ninf, ctx.pi) r = ctx.re(s) if r > ctx.prec: return 0.5**s else: wp = ctx.prec + int(r) def terms(): orig = ctx.prec # zeta ~ 1+eps; need to set precision # to get logarithm accurately k = 0 while 1: k += 1 u = ctx.moebius(k) if not u: continue ctx.prec = wp t = u*ctx.ln(ctx.zeta(k*s))/k if not t: return #print ctx.prec, ctx.nstr(t) ctx.prec = orig yield t return ctx.sum_accurately(terms) # TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered @defun_wrapped def bernpoly(ctx, n, z): # Slow implementation: #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1)) n = int(n) if n < 0: raise ValueError("Bernoulli polynomials only defined for n >= 0") if z == 0 or (z == 1 and n > 1): return ctx.bernoulli(n) if z == 0.5: return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n) if n <= 3: if n == 0: return z ** 0 if n == 1: return z - 0.5 if n == 2: return (6*z*(z-1)+1)/6 if n == 3: return z*(z*(z-1.5)+0.5) if ctx.isinf(z): return z ** n if ctx.isnan(z): return z if abs(z) > 2: def terms(): t = ctx.one yield t r = ctx.one/z k = 1 while k <= n: t = t*(n+1-k)/k*r if not (k > 2 and k & 1): yield t*ctx.bernoulli(k) k += 1 return ctx.sum_accurately(terms) * z**n else: def terms(): yield ctx.bernoulli(n) t = ctx.one k = 1 while k <= n: t = t*(n+1-k)/k * z m = n-k if not (m > 2 and m & 1): yield t*ctx.bernoulli(m) k += 1 return ctx.sum_accurately(terms) @defun_wrapped def eulerpoly(ctx, n, z): n = int(n) if n < 0: raise ValueError("Euler polynomials only defined for n >= 0") if n <= 2: if n == 0: return z ** 0 if n == 1: return z - 0.5 if n == 2: return z*(z-1) if ctx.isinf(z): return z**n if ctx.isnan(z): return z m = n+1 if z == 0: return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0 if z == 1: return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0 if z == 0.5: if n % 2: return ctx.zero # Use exact code for Euler numbers if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25: return ctx.ldexp(ctx._eulernum(n), -n) # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/ def terms(): t = ctx.one k = 0 w = ctx.ldexp(1,n+2) while 1: v = n-k+1 if not (v > 2 and v & 1): yield (2-w)*ctx.bernoulli(v)*t k += 1 if k > n: break t = t*z*(n-k+2)/k w *= 0.5 return ctx.sum_accurately(terms) / m @defun def eulernum(ctx, n, exact=False): n = int(n) if exact: return int(ctx._eulernum(n)) if n < 100: return ctx.mpf(ctx._eulernum(n)) if n % 2: return ctx.zero return ctx.ldexp(ctx.eulerpoly(n,0.5), n) # TODO: this should be implemented low-level def polylog_series(ctx, s, z): tol = +ctx.eps l = ctx.zero k = 1 zk = z while 1: term = zk / k**s l += term if abs(term) < tol: break zk *= z k += 1 return l def polylog_continuation(ctx, n, z): if n < 0: return z*0 twopij = 2j * ctx.pi a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij) if ctx._is_real_type(z) and z < 0: a = ctx._re(a) if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1): a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1) return a def polylog_unitcircle(ctx, n, z): tol = +ctx.eps if n > 1: l = ctx.zero logz = ctx.ln(z) logmz = ctx.one m = 0 while 1: if (n-m) != 1: term = ctx.zeta(n-m) * logmz / ctx.fac(m) if term and abs(term) < tol: break l += term logmz *= logz m += 1 l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z))) elif n < 1: # else l = ctx.fac(-n)*(-ctx.ln(z))**(n-1) logz = ctx.ln(z) logkz = ctx.one k = 0 while 1: b = ctx.bernoulli(k-n+1) if b: term = b*logkz/(ctx.fac(k)*(k-n+1)) if abs(term) < tol: break l -= term logkz *= logz k += 1 else: raise ValueError if ctx._is_real_type(z) and z < 0: l = ctx._re(l) return l def polylog_general(ctx, s, z): v = ctx.zero u = ctx.ln(z) if not abs(u) < 5: # theoretically |u| < 2*pi j = ctx.j v = 1-s y = ctx.ln(-z)/(2*ctx.pi*j) return ctx.gamma(v)*(j**v*ctx.zeta(v,0.5+y) + j**-v*ctx.zeta(v,0.5-y))/(2*ctx.pi)**v t = 1 k = 0 while 1: term = ctx.zeta(s-k) * t if abs(term) < ctx.eps: break v += term k += 1 t *= u t /= k return ctx.gamma(1-s)*(-u)**(s-1) + v @defun_wrapped def polylog(ctx, s, z): s = ctx.convert(s) z = ctx.convert(z) if z == 1: return ctx.zeta(s) if z == -1: return -ctx.altzeta(s) if s == 0: return z/(1-z) if s == 1: return -ctx.ln(1-z) if s == -1: return z/(1-z)**2 if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9): return polylog_series(ctx, s, z) if abs(z) >= 1.4 and ctx.isint(s): return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, int(ctx.re(s)), z) if ctx.isint(s): return polylog_unitcircle(ctx, int(ctx.re(s)), z) return polylog_general(ctx, s, z) @defun_wrapped def clsin(ctx, s, z, pi=False): if ctx.isint(s) and s < 0 and int(s) % 2 == 1: return z*0 if pi: a = ctx.expjpi(z) else: a = ctx.expj(z) if ctx._is_real_type(z) and ctx._is_real_type(s): return ctx.im(ctx.polylog(s,a)) b = 1/a return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b)) @defun_wrapped def clcos(ctx, s, z, pi=False): if ctx.isint(s) and s < 0 and int(s) % 2 == 0: return z*0 if pi: a = ctx.expjpi(z) else: a = ctx.expj(z) if ctx._is_real_type(z) and ctx._is_real_type(s): return ctx.re(ctx.polylog(s,a)) b = 1/a return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b)) @defun def altzeta(ctx, s, **kwargs): try: return ctx._altzeta(s, **kwargs) except NotImplementedError: return ctx._altzeta_generic(s) @defun_wrapped def _altzeta_generic(ctx, s): if s == 1: return ctx.ln2 + 0*s return -ctx.powm1(2, 1-s) * ctx.zeta(s) @defun def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs): d = int(derivative) if a == 1 and not (d or method): try: return ctx._zeta(s, **kwargs) except NotImplementedError: pass s = ctx.convert(s) prec = ctx.prec method = kwargs.get('method') verbose = kwargs.get('verbose') if (not s) and (not derivative): return ctx.mpf(0.5) - ctx._convert_param(a)[0] if a == 1 and method != 'euler-maclaurin': im = abs(ctx._im(s)) re = abs(ctx._re(s)) #if (im < prec or method == 'borwein') and not derivative: # try: # if verbose: # print "zeta: Attempting to use the Borwein algorithm" # return ctx._zeta(s, **kwargs) # except NotImplementedError: # if verbose: # print "zeta: Could not use the Borwein algorithm" # pass if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \ method == 'riemann-siegel': try: # py2.4 compatible try block try: if verbose: print("zeta: Attempting to use the Riemann-Siegel algorithm") return ctx.rs_zeta(s, derivative, **kwargs) except NotImplementedError: if verbose: print("zeta: Could not use the Riemann-Siegel algorithm") pass finally: ctx.prec = prec if s == 1: return ctx.inf abss = abs(s) if abss == ctx.inf: if ctx.re(s) == ctx.inf: if d == 0: return ctx.one return ctx.zero return s*0 elif ctx.isnan(abss): return 1/s if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative: return ctx.one + ctx.power(2, -s) return +ctx._hurwitz(s, a, d, **kwargs) @defun def _hurwitz(ctx, s, a=1, d=0, **kwargs): prec = ctx.prec verbose = kwargs.get('verbose') try: extraprec = 10 ctx.prec += extraprec # We strongly want to special-case rational a a, atype = ctx._convert_param(a) if ctx.re(s) < 0: if verbose: print("zeta: Attempting reflection formula") try: return _hurwitz_reflection(ctx, s, a, d, atype) except NotImplementedError: pass if verbose: print("zeta: Reflection formula failed") if verbose: print("zeta: Using the Euler-Maclaurin algorithm") while 1: ctx.prec = prec + extraprec T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose) cancellation = ctx.mag(T1) - ctx.mag(T1+T2) if verbose: print("Term 1:", T1) print("Term 2:", T2) print("Cancellation:", cancellation, "bits") if cancellation < extraprec: return T1 + T2 else: extraprec = max(2*extraprec, min(cancellation + 5, 100*prec)) if extraprec > kwargs.get('maxprec', 100*prec): raise ctx.NoConvergence("zeta: too much cancellation") finally: ctx.prec = prec def _hurwitz_reflection(ctx, s, a, d, atype): # TODO: implement for derivatives if d != 0: raise NotImplementedError res = ctx.re(s) negs = -s # Integer reflection formula if ctx.isnpint(s): n = int(res) if n <= 0: return ctx.bernpoly(1-n, a) / (n-1) if not (atype == 'Q' or atype == 'Z'): raise NotImplementedError t = 1-s # We now require a to be standardized v = 0 shift = 0 b = a while ctx.re(b) > 1: b -= 1 v -= b**negs shift -= 1 while ctx.re(b) <= 0: v += b**negs b += 1 shift += 1 # Rational reflection formula try: p, q = a._mpq_ except: assert a == int(a) p = int(a) q = 1 p += shift*q assert 1 <= p <= q g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \ for k in range(1,q+1)) g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t v += g return v def _hurwitz_em(ctx, s, a, d, prec, verbose): # May not be converted at this point a = ctx.convert(a) tol = -prec # Estimate number of terms for Euler-Maclaurin summation; could be improved M1 = 0 M2 = prec // 3 N = M2 lsum = 0 # This speeds up the recurrence for derivatives if ctx.isint(s): s = int(ctx._re(s)) s1 = s-1 while 1: # Truncated L-series l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0] #if d: # l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2)) #else: # l = ctx.fsum((n+a)**negs for n in range(M1,M2)) lsum += l M2a = M2+a logM2a = ctx.ln(M2a) logM2ad = logM2a**d logs = [logM2ad] logr = 1/logM2a rM2a = 1/M2a M2as = M2a**(-s) if d: tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1) else: tailsum = 1/((s1)*(M2a)**s1) tailsum += 0.5 * logM2ad * M2as U = [1] r = M2as fact = 2 for j in range(1, N+1): # TODO: the following could perhaps be tidied a bit j2 = 2*j if j == 1: upds = [1] else: upds = [j2-2, j2-1] for m in upds: D = min(m,d+1) if m <= d: logs.append(logs[-1] * logr) Un = [0]*(D+1) for i in xrange(D): Un[i] = (1-m-s)*U[i] for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1] U = Un r *= rM2a t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact) tailsum += t if ctx.mag(t) < tol: return lsum, (-1)**d * tailsum fact *= (j2+1)*(j2+2) if verbose: print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol) M1, M2 = M2, M2*2 if ctx.re(s) < 0: N += N//2 @defun def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False): """ Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s ) ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) ) D^k = kth derivative with respect to s, k ranges over the given list of derivatives (which should consist of either a single element or a range 0,1,...r). If reflect=False, the ydks are not computed. """ #print "zetasum", s, a, n # don't use the fixed-point code if there are large exponentials if abs(ctx.re(s)) < 0.5 * ctx.prec: try: return ctx._zetasum_fast(s, a, n, derivatives, reflect) except NotImplementedError: pass negs = ctx.fneg(s, exact=True) have_derivatives = derivatives != [0] have_one_derivative = len(derivatives) == 1 if not reflect: if not have_derivatives: return [ctx.fsum((a+k)**negs for k in xrange(n+1))], [] if have_one_derivative: d = derivatives[0] x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1)) return [(-1)**d * x], [] maxd = max(derivatives) if not have_one_derivative: derivatives = range(maxd+1) xs = [ctx.zero for d in derivatives] if reflect: ys = [ctx.zero for d in derivatives] else: ys = [] for k in xrange(n+1): w = a + k xterm = w ** negs if reflect: yterm = ctx.conj(ctx.one / (w * xterm)) if have_derivatives: logw = -ctx.ln(w) if have_one_derivative: logw = logw ** maxd xs[0] += xterm * logw if reflect: ys[0] += yterm * logw else: t = ctx.one for d in derivatives: xs[d] += xterm * t if reflect: ys[d] += yterm * t t *= logw else: xs[0] += xterm if reflect: ys[0] += yterm return xs, ys @defun def dirichlet(ctx, s, chi=[1], derivative=0): s = ctx.convert(s) q = len(chi) d = int(derivative) if d > 2: raise NotImplementedError("arbitrary order derivatives") prec = ctx.prec try: ctx.prec += 10 if s == 1: have_pole = True for x in chi: if x and x != 1: have_pole = False h = +ctx.eps ctx.prec *= 2*(d+1) s += h if have_pole: return +ctx.inf z = ctx.zero for p in range(1,q+1): if chi[p%q]: if d == 1: z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \ ctx.zeta(s, (p,q))*ctx.log(q)) else: z += chi[p%q] * ctx.zeta(s, (p,q)) z /= q**s finally: ctx.prec = prec return +z def secondzeta_main_term(ctx, s, a, **kwargs): tol = ctx.eps f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s) totsum = term = ctx.zero mg = ctx.inf n = 0 while mg > tol: totsum += term n += 1 gamm = ctx.im(ctx.zetazero_memoized(n)) term = f(n) mg = abs(term) err = 0 if kwargs.get("error"): sg = ctx.re(s) err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\ ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2)) err = abs(err) return +totsum, err, n def secondzeta_prime_term(ctx, s, a, **kwargs): tol = ctx.eps f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\ ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\ (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi)) totsum = term = ctx.zero mg = ctx.inf n = 1 while mg > tol or n < 9: totsum += term n += 1 term = f(n) if term == 0: mg = ctx.inf else: mg = abs(term) if kwargs.get("error"): err = mg return +totsum, err, n def secondzeta_exp_term(ctx, s, a): if ctx.isint(s) and ctx.re(s) <= 0: m = int(round(ctx.re(s))) if not m & 1: return ctx.mpf('-0.25')**(-m//2) tol = ctx.eps f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n)) totsum = ctx.zero term = f(0) mg = ctx.inf n = 0 while mg > tol: totsum += term n += 1 term = f(n) mg = abs(term) v = a**(0.5*s)*totsum/ctx.gamma(0.5*s) return v def secondzeta_singular_term(ctx, s, a, **kwargs): factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s)) extraprec = ctx.mag(factor) ctx.prec += extraprec factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s)) tol = ctx.eps f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\ ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n)) totsum = ctx.zero mg1 = ctx.inf n = 1 term = f(n) mg2 = abs(term) while mg2 > tol and mg2 <= mg1: totsum += term n += 1 term = f(n) totsum += term n +=1 term = f(n) mg1 = mg2 mg2 = abs(term) totsum += term pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1) st = factor*(pole+totsum) err = 0 if kwargs.get("error"): if not ((mg2 > tol) and (mg2 <= mg1)): if mg2 <= tol: err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10)) if mg2 > mg1: err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10)) err = max(err, ctx.eps*1.) ctx.prec -= extraprec return +st, err @defun def secondzeta(ctx, s, a = 0.015, **kwargs): r""" Evaluates the secondary zeta function `Z(s)`, defined for `\mathrm{Re}(s)>1` by .. math :: Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s} where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with imaginary part positive. `Z(s)` extends to a meromorphic function on `\mathbb{C}` with a double pole at `s=1` and simple poles at the points `-2n` for `n=0`, 1, 2, ... **Examples** >>> from mpmath import * >>> mp.pretty = True; mp.dps = 15 >>> secondzeta(2) 0.023104993115419 >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s) >>> Xi = lambda t: xi(0.5+t*j) >>> chop(-0.5*diff(Xi,0,n=2)/Xi(0)) 0.023104993115419 We may ask for an approximate error value:: >>> secondzeta(0.5+100j, error=True) ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16) The function has poles at the negative odd integers, and dyadic rational values at the negative even integers:: >>> mp.dps = 30 >>> secondzeta(-8) -0.67236328125 >>> secondzeta(-7) +inf **Implementation notes** The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)` respectively main, prime, exponential and singular terms. The main term `A(s)` is computed from the zeros of zeta. The prime term depends on the von Mangoldt function. The singular term is responsible for the poles of the function. The four terms depends on a small parameter `a`. We may change the value of `a`. Theoretically this has no effect on the sum of the four terms, but in practice may be important. A smaller value of the parameter `a` makes `A(s)` depend on a smaller number of zeros of zeta, but `P(s)` uses more values of von Mangoldt function. We may also add a verbose option to obtain data about the values of the four terms. >>> mp.dps = 10 >>> secondzeta(0.5 + 40j, error=True, verbose=True) main term = (-30190318549.138656312556 - 13964804384.624622876523j) computed using 19 zeros of zeta prime term = (132717176.89212754625045 + 188980555.17563978290601j) computed using 9 values of the von Mangoldt function exponential term = (542447428666.07179812536 + 362434922978.80192435203j) singular term = (512124392939.98154322355 + 348281138038.65531023921j) ((0.059471043 + 0.3463514534j), 1.455191523e-11) >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True) main term = (-151962888.19606243907725 - 217930683.90210294051982j) computed using 9 zeros of zeta prime term = (2476659342.3038722372461 + 28711581821.921627163136j) computed using 37 values of the von Mangoldt function exponential term = (178506047114.7838188264 + 819674143244.45677330576j) singular term = (175877424884.22441310708 + 790744630738.28669174871j) ((0.059471043 + 0.3463514534j), 1.455191523e-11) Notice the great cancellation between the four terms. Changing `a`, the four terms are very different numbers but the cancellation gives the good value of Z(s). **References** A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier, 53, (2003) 665--699. A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes of the Unione Matematica Italiana, Springer, 2009. """ s = ctx.convert(s) a = ctx.convert(a) tol = ctx.eps if ctx.isint(s) and ctx.re(s) <= 1: if abs(s-1) < tol*1000: return ctx.inf m = int(round(ctx.re(s))) if m & 1: return ctx.inf else: return ((-1)**(-m//2)*\ ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3))) prec = ctx.prec try: t3 = secondzeta_exp_term(ctx, s, a) extraprec = max(ctx.mag(t3),0) ctx.prec += extraprec + 3 t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True') t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True') t4, r4 = secondzeta_singular_term(ctx,s,a,error='True') t3 = secondzeta_exp_term(ctx, s, a) err = r1+r2+r4 t = t1-t2+t3-t4 if kwargs.get("verbose"): print('main term =', t1) print(' computed using', gt, 'zeros of zeta') print('prime term =', t2) print(' computed using', pt, 'values of the von Mangoldt function') print('exponential term =', t3) print('singular term =', t4) finally: ctx.prec = prec if kwargs.get("error"): w = max(ctx.mag(abs(t)),0) err = max(err*2**w, ctx.eps*1.*2**w) return +t, err return +t @defun_wrapped def lerchphi(ctx, z, s, a): r""" Gives the Lerch transcendent, defined for `|z| < 1` and `\Re{a} > 0` by .. math :: \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s} and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}` along with the integral representation valid for `\Re{a} > 0` .. math :: \Phi(z,s,a) = \frac{1}{2 a^s} + \int_0^{\infty} \frac{z^t}{(a+t)^s} dt - 2 \int_0^{\infty} \frac{\sin(t \log z - s \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2} (e^{2 \pi t}-1)} dt. The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta` (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`). **Examples** Several evaluations in terms of simpler functions:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> lerchphi(-1,2,0.5); 4*catalan 3.663862376708876060218414 3.663862376708876060218414 >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2) 0.2131391994087528954617607 0.2131391994087528954617607 >>> lerchphi(-4,1,1); log(5)/4 0.4023594781085250936501898 0.4023594781085250936501898 >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j) (1.142423447120257137774002 + 0.2118232380980201350495795j) (1.142423447120257137774002 + 0.2118232380980201350495795j) Evaluation works for complex arguments and `|z| \ge 1`:: >>> lerchphi(1+2j, 3-j, 4+2j) (0.002025009957009908600539469 + 0.003327897536813558807438089j) >>> lerchphi(-2,2,-2.5) -12.28676272353094275265944 >>> lerchphi(10,10,10) (-4.462130727102185701817349e-11 - 1.575172198981096218823481e-12j) >>> lerchphi(10,10,-10.5) (112658784011940.5605789002 - 498113185.5756221777743631j) Some degenerate cases:: >>> lerchphi(0,1,2) 0.5 >>> lerchphi(0,1,-2) -0.5 Reduction to simpler functions:: >>> lerchphi(1, 4.25+1j, 1) (1.044674457556746668033975 - 0.04674508654012658932271226j) >>> zeta(4.25+1j) (1.044674457556746668033975 - 0.04674508654012658932271226j) >>> lerchphi(1 - 0.5**10, 4.25+1j, 1) (1.044629338021507546737197 - 0.04667768813963388181708101j) >>> lerchphi(3, 4, 1) (1.249503297023366545192592 - 0.2314252413375664776474462j) >>> polylog(4, 3) / 3 (1.249503297023366545192592 - 0.2314252413375664776474462j) >>> lerchphi(3, 4, 1 - 0.5**10) (1.253978063946663945672674 - 0.2316736622836535468765376j) **References** 1. [DLMF]_ section 25.14 """ if z == 0: return a ** (-s) # Faster, but these cases are useful for testing right now if z == 1: return ctx.zeta(s, a) if a == 1: return ctx.polylog(s, z) / z if ctx.re(a) < 1: if ctx.isnpint(a): raise ValueError("Lerch transcendent complex infinity") m = int(ctx.ceil(1-ctx.re(a))) v = ctx.zero zpow = ctx.one for n in xrange(m): v += zpow / (a+n)**s zpow *= z return zpow * ctx.lerchphi(z,s, a+m) + v g = ctx.ln(z) v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a h = s / 2 r = 2*ctx.pi f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \ ((a**2+t**2)**h * ctx.expm1(r*t)) v += 2*ctx.quad(f, [0, ctx.inf]) if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1: v = ctx.chop(v) return v