from mpmath.libmp import * from mpmath import * import random import time import math import cmath def mpc_ae(a, b, eps=eps): res = True res = res and a.real.ae(b.real, eps) res = res and a.imag.ae(b.imag, eps) return res #---------------------------------------------------------------------------- # Constants and functions # tpi = "3.1415926535897932384626433832795028841971693993751058209749445923078\ 1640628620899862803482534211706798" te = "2.71828182845904523536028747135266249775724709369995957496696762772407\ 663035354759457138217852516642743" tdegree = "0.017453292519943295769236907684886127134428718885417254560971914\ 4017100911460344944368224156963450948221" teuler = "0.5772156649015328606065120900824024310421593359399235988057672348\ 84867726777664670936947063291746749516" tln2 = "0.693147180559945309417232121458176568075500134360255254120680009493\ 393621969694715605863326996418687542" tln10 = "2.30258509299404568401799145468436420760110148862877297603332790096\ 757260967735248023599720508959829834" tcatalan = "0.91596559417721901505460351493238411077414937428167213426649811\ 9621763019776254769479356512926115106249" tkhinchin = "2.6854520010653064453097148354817956938203822939944629530511523\ 4555721885953715200280114117493184769800" tglaisher = "1.2824271291006226368753425688697917277676889273250011920637400\ 2174040630885882646112973649195820237439420646" tapery = "1.2020569031595942853997381615114499907649862923404988817922715553\ 4183820578631309018645587360933525815" tphi = "1.618033988749894848204586834365638117720309179805762862135448622705\ 26046281890244970720720418939113748475" tmertens = "0.26149721284764278375542683860869585905156664826119920619206421\ 3924924510897368209714142631434246651052" ttwinprime = "0.660161815846869573927812110014555778432623360284733413319448\ 423335405642304495277143760031413839867912" def test_constants(): for prec in [3, 7, 10, 15, 20, 37, 80, 100, 29]: mp.dps = prec assert pi == mpf(tpi) assert e == mpf(te) assert degree == mpf(tdegree) assert euler == mpf(teuler) assert ln2 == mpf(tln2) assert ln10 == mpf(tln10) assert catalan == mpf(tcatalan) assert khinchin == mpf(tkhinchin) assert glaisher == mpf(tglaisher) assert phi == mpf(tphi) if prec < 50: assert mertens == mpf(tmertens) assert twinprime == mpf(ttwinprime) mp.dps = 15 assert pi >= -1 assert pi > 2 assert pi > 3 assert pi < 4 def test_exact_sqrts(): for i in range(20000): assert sqrt(mpf(i*i)) == i random.seed(1) for prec in [100, 300, 1000, 10000]: mp.dps = prec for i in range(20): A = random.randint(10**(prec//2-2), 10**(prec//2-1)) assert sqrt(mpf(A*A)) == A mp.dps = 15 for i in range(100): for a in [1, 8, 25, 112307]: assert sqrt(mpf((a*a, 2*i))) == mpf((a, i)) assert sqrt(mpf((a*a, -2*i))) == mpf((a, -i)) def test_sqrt_rounding(): for i in [2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15]: i = from_int(i) for dps in [7, 15, 83, 106, 2000]: mp.dps = dps a = mpf_pow_int(mpf_sqrt(i, mp.prec, round_down), 2, mp.prec, round_down) b = mpf_pow_int(mpf_sqrt(i, mp.prec, round_up), 2, mp.prec, round_up) assert mpf_lt(a, i) assert mpf_gt(b, i) random.seed(1234) prec = 100 for rnd in [round_down, round_nearest, round_ceiling]: for i in range(100): a = mpf_rand(prec) b = mpf_mul(a, a) assert mpf_sqrt(b, prec, rnd) == a # Test some extreme cases mp.dps = 100 a = mpf(9) + 1e-90 b = mpf(9) - 1e-90 mp.dps = 15 assert sqrt(a, rounding='d') == 3 assert sqrt(a, rounding='n') == 3 assert sqrt(a, rounding='u') > 3 assert sqrt(b, rounding='d') < 3 assert sqrt(b, rounding='n') == 3 assert sqrt(b, rounding='u') == 3 # A worst case, from the MPFR test suite assert sqrt(mpf('7.0503726185518891')) == mpf('2.655253776675949') def test_float_sqrt(): mp.dps = 15 # These should round identically for x in [0, 1e-7, 0.1, 0.5, 1, 2, 3, 4, 5, 0.333, 76.19]: assert sqrt(mpf(x)) == float(x)**0.5 assert sqrt(-1) == 1j assert sqrt(-2).ae(cmath.sqrt(-2)) assert sqrt(-3).ae(cmath.sqrt(-3)) assert sqrt(-100).ae(cmath.sqrt(-100)) assert sqrt(1j).ae(cmath.sqrt(1j)) assert sqrt(-1j).ae(cmath.sqrt(-1j)) assert sqrt(math.pi + math.e*1j).ae(cmath.sqrt(math.pi + math.e*1j)) assert sqrt(math.pi - math.e*1j).ae(cmath.sqrt(math.pi - math.e*1j)) def test_hypot(): assert hypot(0, 0) == 0 assert hypot(0, 0.33) == mpf(0.33) assert hypot(0.33, 0) == mpf(0.33) assert hypot(-0.33, 0) == mpf(0.33) assert hypot(3, 4) == mpf(5) def test_exact_cbrt(): for i in range(0, 20000, 200): assert cbrt(mpf(i*i*i)) == i random.seed(1) for prec in [100, 300, 1000, 10000]: mp.dps = prec A = random.randint(10**(prec//2-2), 10**(prec//2-1)) assert cbrt(mpf(A*A*A)) == A mp.dps = 15 def test_exp(): assert exp(0) == 1 assert exp(10000).ae(mpf('8.8068182256629215873e4342')) assert exp(-10000).ae(mpf('1.1354838653147360985e-4343')) a = exp(mpf((1, 8198646019315405, -53, 53))) assert(a.bc == bitcount(a.man)) mp.prec = 67 a = exp(mpf((1, 1781864658064754565, -60, 61))) assert(a.bc == bitcount(a.man)) mp.prec = 53 assert exp(ln2 * 10).ae(1024) assert exp(2+2j).ae(cmath.exp(2+2j)) def test_issue_73(): mp.dps = 512 a = exp(-1) b = exp(1) mp.dps = 15 assert (+a).ae(0.36787944117144233) assert (+b).ae(2.7182818284590451) def test_log(): mp.dps = 15 assert log(1) == 0 for x in [0.5, 1.5, 2.0, 3.0, 100, 10**50, 1e-50]: assert log(x).ae(math.log(x)) assert log(x, x) == 1 assert log(1024, 2) == 10 assert log(10**1234, 10) == 1234 assert log(2+2j).ae(cmath.log(2+2j)) # Accuracy near 1 assert (log(0.6+0.8j).real*10**17).ae(2.2204460492503131) assert (log(0.6-0.8j).real*10**17).ae(2.2204460492503131) assert (log(0.8-0.6j).real*10**17).ae(2.2204460492503131) assert (log(1+1e-8j).real*10**16).ae(0.5) assert (log(1-1e-8j).real*10**16).ae(0.5) assert (log(-1+1e-8j).real*10**16).ae(0.5) assert (log(-1-1e-8j).real*10**16).ae(0.5) assert (log(1j+1e-8).real*10**16).ae(0.5) assert (log(1j-1e-8).real*10**16).ae(0.5) assert (log(-1j+1e-8).real*10**16).ae(0.5) assert (log(-1j-1e-8).real*10**16).ae(0.5) assert (log(1+1e-40j).real*10**80).ae(0.5) assert (log(1j+1e-40).real*10**80).ae(0.5) # Huge assert log(ldexp(1.234,10**20)).ae(log(2)*1e20) assert log(ldexp(1.234,10**200)).ae(log(2)*1e200) # Some special values assert log(mpc(0,0)) == mpc(-inf,0) assert isnan(log(mpc(nan,0)).real) assert isnan(log(mpc(nan,0)).imag) assert isnan(log(mpc(0,nan)).real) assert isnan(log(mpc(0,nan)).imag) assert isnan(log(mpc(nan,1)).real) assert isnan(log(mpc(nan,1)).imag) assert isnan(log(mpc(1,nan)).real) assert isnan(log(mpc(1,nan)).imag) def test_trig_hyperb_basic(): for x in (list(range(100)) + list(range(-100,0))): t = x / 4.1 assert cos(mpf(t)).ae(math.cos(t)) assert sin(mpf(t)).ae(math.sin(t)) assert tan(mpf(t)).ae(math.tan(t)) assert cosh(mpf(t)).ae(math.cosh(t)) assert sinh(mpf(t)).ae(math.sinh(t)) assert tanh(mpf(t)).ae(math.tanh(t)) assert sin(1+1j).ae(cmath.sin(1+1j)) assert sin(-4-3.6j).ae(cmath.sin(-4-3.6j)) assert cos(1+1j).ae(cmath.cos(1+1j)) assert cos(-4-3.6j).ae(cmath.cos(-4-3.6j)) def test_degrees(): assert cos(0*degree) == 1 assert cos(90*degree).ae(0) assert cos(180*degree).ae(-1) assert cos(270*degree).ae(0) assert cos(360*degree).ae(1) assert sin(0*degree) == 0 assert sin(90*degree).ae(1) assert sin(180*degree).ae(0) assert sin(270*degree).ae(-1) assert sin(360*degree).ae(0) def random_complexes(N): random.seed(1) a = [] for i in range(N): x1 = random.uniform(-10, 10) y1 = random.uniform(-10, 10) x2 = random.uniform(-10, 10) y2 = random.uniform(-10, 10) z1 = complex(x1, y1) z2 = complex(x2, y2) a.append((z1, z2)) return a def test_complex_powers(): for dps in [15, 30, 100]: # Check accuracy for complex square root mp.dps = dps a = mpc(1j)**0.5 assert a.real == a.imag == mpf(2)**0.5 / 2 mp.dps = 15 random.seed(1) for (z1, z2) in random_complexes(100): assert (mpc(z1)**mpc(z2)).ae(z1**z2, 1e-12) assert (e**(-pi*1j)).ae(-1) mp.dps = 50 assert (e**(-pi*1j)).ae(-1) mp.dps = 15 def test_complex_sqrt_accuracy(): def test_mpc_sqrt(lst): for a, b in lst: z = mpc(a + j*b) assert mpc_ae(sqrt(z*z), z) z = mpc(-a + j*b) assert mpc_ae(sqrt(z*z), -z) z = mpc(a - j*b) assert mpc_ae(sqrt(z*z), z) z = mpc(-a - j*b) assert mpc_ae(sqrt(z*z), -z) random.seed(2) N = 10 mp.dps = 30 dps = mp.dps test_mpc_sqrt([(random.uniform(0, 10),random.uniform(0, 10)) for i in range(N)]) test_mpc_sqrt([(i + 0.1, (i + 0.2)*10**i) for i in range(N)]) mp.dps = 15 def test_atan(): mp.dps = 15 assert atan(-2.3).ae(math.atan(-2.3)) assert atan(1e-50) == 1e-50 assert atan(1e50).ae(pi/2) assert atan(-1e-50) == -1e-50 assert atan(-1e50).ae(-pi/2) assert atan(10**1000).ae(pi/2) for dps in [25, 70, 100, 300, 1000]: mp.dps = dps assert (4*atan(1)).ae(pi) mp.dps = 15 pi2 = pi/2 assert atan(mpc(inf,-1)).ae(pi2) assert atan(mpc(inf,0)).ae(pi2) assert atan(mpc(inf,1)).ae(pi2) assert atan(mpc(1,inf)).ae(pi2) assert atan(mpc(0,inf)).ae(pi2) assert atan(mpc(-1,inf)).ae(-pi2) assert atan(mpc(-inf,1)).ae(-pi2) assert atan(mpc(-inf,0)).ae(-pi2) assert atan(mpc(-inf,-1)).ae(-pi2) assert atan(mpc(-1,-inf)).ae(-pi2) assert atan(mpc(0,-inf)).ae(-pi2) assert atan(mpc(1,-inf)).ae(pi2) def test_atan2(): mp.dps = 15 assert atan2(1,1).ae(pi/4) assert atan2(1,-1).ae(3*pi/4) assert atan2(-1,-1).ae(-3*pi/4) assert atan2(-1,1).ae(-pi/4) assert atan2(-1,0).ae(-pi/2) assert atan2(1,0).ae(pi/2) assert atan2(0,0) == 0 assert atan2(inf,0).ae(pi/2) assert atan2(-inf,0).ae(-pi/2) assert isnan(atan2(inf,inf)) assert isnan(atan2(-inf,inf)) assert isnan(atan2(inf,-inf)) assert isnan(atan2(3,nan)) assert isnan(atan2(nan,3)) assert isnan(atan2(0,nan)) assert isnan(atan2(nan,0)) assert atan2(0,inf) == 0 assert atan2(0,-inf).ae(pi) assert atan2(10,inf) == 0 assert atan2(-10,inf) == 0 assert atan2(-10,-inf).ae(-pi) assert atan2(10,-inf).ae(pi) assert atan2(inf,10).ae(pi/2) assert atan2(inf,-10).ae(pi/2) assert atan2(-inf,10).ae(-pi/2) assert atan2(-inf,-10).ae(-pi/2) def test_areal_inverses(): assert asin(mpf(0)) == 0 assert asinh(mpf(0)) == 0 assert acosh(mpf(1)) == 0 assert isinstance(asin(mpf(0.5)), mpf) assert isinstance(asin(mpf(2.0)), mpc) assert isinstance(acos(mpf(0.5)), mpf) assert isinstance(acos(mpf(2.0)), mpc) assert isinstance(atanh(mpf(0.1)), mpf) assert isinstance(atanh(mpf(1.1)), mpc) random.seed(1) for i in range(50): x = random.uniform(0, 1) assert asin(mpf(x)).ae(math.asin(x)) assert acos(mpf(x)).ae(math.acos(x)) x = random.uniform(-10, 10) assert asinh(mpf(x)).ae(cmath.asinh(x).real) assert isinstance(asinh(mpf(x)), mpf) x = random.uniform(1, 10) assert acosh(mpf(x)).ae(cmath.acosh(x).real) assert isinstance(acosh(mpf(x)), mpf) x = random.uniform(-10, 0.999) assert isinstance(acosh(mpf(x)), mpc) x = random.uniform(-1, 1) assert atanh(mpf(x)).ae(cmath.atanh(x).real) assert isinstance(atanh(mpf(x)), mpf) dps = mp.dps mp.dps = 300 assert isinstance(asin(0.5), mpf) mp.dps = 1000 assert asin(1).ae(pi/2) assert asin(-1).ae(-pi/2) mp.dps = dps def test_invhyperb_inaccuracy(): mp.dps = 15 assert (asinh(1e-5)*10**5).ae(0.99999999998333333) assert (asinh(1e-10)*10**10).ae(1) assert (asinh(1e-50)*10**50).ae(1) assert (asinh(-1e-5)*10**5).ae(-0.99999999998333333) assert (asinh(-1e-10)*10**10).ae(-1) assert (asinh(-1e-50)*10**50).ae(-1) assert asinh(10**20).ae(46.744849040440862) assert asinh(-10**20).ae(-46.744849040440862) assert (tanh(1e-10)*10**10).ae(1) assert (tanh(-1e-10)*10**10).ae(-1) assert (atanh(1e-10)*10**10).ae(1) assert (atanh(-1e-10)*10**10).ae(-1) def test_complex_functions(): for x in (list(range(10)) + list(range(-10,0))): for y in (list(range(10)) + list(range(-10,0))): z = complex(x, y)/4.3 + 0.01j assert exp(mpc(z)).ae(cmath.exp(z)) assert log(mpc(z)).ae(cmath.log(z)) assert cos(mpc(z)).ae(cmath.cos(z)) assert sin(mpc(z)).ae(cmath.sin(z)) assert tan(mpc(z)).ae(cmath.tan(z)) assert sinh(mpc(z)).ae(cmath.sinh(z)) assert cosh(mpc(z)).ae(cmath.cosh(z)) assert tanh(mpc(z)).ae(cmath.tanh(z)) def test_complex_inverse_functions(): mp.dps = 15 iv.dps = 15 for (z1, z2) in random_complexes(30): # apparently cmath uses a different branch, so we # can't use it for comparison assert sinh(asinh(z1)).ae(z1) # assert acosh(z1).ae(cmath.acosh(z1)) assert atanh(z1).ae(cmath.atanh(z1)) assert atan(z1).ae(cmath.atan(z1)) # the reason we set a big eps here is that the cmath # functions are inaccurate assert asin(z1).ae(cmath.asin(z1), rel_eps=1e-12) assert acos(z1).ae(cmath.acos(z1), rel_eps=1e-12) one = mpf(1) for i in range(-9, 10, 3): for k in range(-9, 10, 3): a = 0.9*j*10**k + 0.8*one*10**i b = cos(acos(a)) assert b.ae(a) b = sin(asin(a)) assert b.ae(a) one = mpf(1) err = 2*10**-15 for i in range(-9, 9, 3): for k in range(-9, 9, 3): a = -0.9*10**k + j*0.8*one*10**i b = cosh(acosh(a)) assert b.ae(a, err) b = sinh(asinh(a)) assert b.ae(a, err) def test_reciprocal_functions(): assert sec(3).ae(-1.01010866590799375) assert csc(3).ae(7.08616739573718592) assert cot(3).ae(-7.01525255143453347) assert sech(3).ae(0.0993279274194332078) assert csch(3).ae(0.0998215696688227329) assert coth(3).ae(1.00496982331368917) assert asec(3).ae(1.23095941734077468) assert acsc(3).ae(0.339836909454121937) assert acot(3).ae(0.321750554396642193) assert asech(0.5).ae(1.31695789692481671) assert acsch(3).ae(0.327450150237258443) assert acoth(3).ae(0.346573590279972655) assert acot(0).ae(1.5707963267948966192) assert acoth(0).ae(1.5707963267948966192j) def test_ldexp(): mp.dps = 15 assert ldexp(mpf(2.5), 0) == 2.5 assert ldexp(mpf(2.5), -1) == 1.25 assert ldexp(mpf(2.5), 2) == 10 assert ldexp(mpf('inf'), 3) == mpf('inf') def test_frexp(): mp.dps = 15 assert frexp(0) == (0.0, 0) assert frexp(9) == (0.5625, 4) assert frexp(1) == (0.5, 1) assert frexp(0.2) == (0.8, -2) assert frexp(1000) == (0.9765625, 10) def test_aliases(): assert ln(7) == log(7) assert log10(3.75) == log(3.75,10) assert degrees(5.6) == 5.6 / degree assert radians(5.6) == 5.6 * degree assert power(-1,0.5) == j assert fmod(25,7) == 4.0 and isinstance(fmod(25,7), mpf) def test_arg_sign(): assert arg(3) == 0 assert arg(-3).ae(pi) assert arg(j).ae(pi/2) assert arg(-j).ae(-pi/2) assert arg(0) == 0 assert isnan(atan2(3,nan)) assert isnan(atan2(nan,3)) assert isnan(atan2(0,nan)) assert isnan(atan2(nan,0)) assert isnan(atan2(nan,nan)) assert arg(inf) == 0 assert arg(-inf).ae(pi) assert isnan(arg(nan)) #assert arg(inf*j).ae(pi/2) assert sign(0) == 0 assert sign(3) == 1 assert sign(-3) == -1 assert sign(inf) == 1 assert sign(-inf) == -1 assert isnan(sign(nan)) assert sign(j) == j assert sign(-3*j) == -j assert sign(1+j).ae((1+j)/sqrt(2)) def test_misc_bugs(): # test that this doesn't raise an exception mp.dps = 1000 log(1302) mp.dps = 15 def test_arange(): assert arange(10) == [mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0'), mpf('5.0'), mpf('6.0'), mpf('7.0'), mpf('8.0'), mpf('9.0')] assert arange(-5, 5) == [mpf('-5.0'), mpf('-4.0'), mpf('-3.0'), mpf('-2.0'), mpf('-1.0'), mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')] assert arange(0, 1, 0.1) == [mpf('0.0'), mpf('0.10000000000000001'), mpf('0.20000000000000001'), mpf('0.30000000000000004'), mpf('0.40000000000000002'), mpf('0.5'), mpf('0.60000000000000009'), mpf('0.70000000000000007'), mpf('0.80000000000000004'), mpf('0.90000000000000002')] assert arange(17, -9, -3) == [mpf('17.0'), mpf('14.0'), mpf('11.0'), mpf('8.0'), mpf('5.0'), mpf('2.0'), mpf('-1.0'), mpf('-4.0'), mpf('-7.0')] assert arange(0.2, 0.1, -0.1) == [mpf('0.20000000000000001')] assert arange(0) == [] assert arange(1000, -1) == [] assert arange(-1.23, 3.21, -0.0000001) == [] def test_linspace(): assert linspace(2, 9, 7) == [mpf('2.0'), mpf('3.166666666666667'), mpf('4.3333333333333339'), mpf('5.5'), mpf('6.666666666666667'), mpf('7.8333333333333339'), mpf('9.0')] assert linspace(2, 9, 7, endpoint=0) == [mpf('2.0'), mpf('3.0'), mpf('4.0'), mpf('5.0'), mpf('6.0'), mpf('7.0'), mpf('8.0')] assert linspace(2, 7, 1) == [mpf(2)] def test_float_cbrt(): mp.dps = 30 for a in arange(0,10,0.1): assert cbrt(a*a*a).ae(a, eps) assert cbrt(-1).ae(0.5 + j*sqrt(3)/2) one_third = mpf(1)/3 for a in arange(0,10,2.7) + [0.1 + 10**5]: a = mpc(a + 1.1j) r1 = cbrt(a) mp.dps += 10 r2 = pow(a, one_third) mp.dps -= 10 assert r1.ae(r2, eps) mp.dps = 100 for n in range(100, 301, 100): w = 10**n + j*10**-3 z = w*w*w r = cbrt(z) assert mpc_ae(r, w, eps) mp.dps = 15 def test_root(): mp.dps = 30 random.seed(1) a = random.randint(0, 10000) p = a*a*a r = nthroot(mpf(p), 3) assert r == a for n in range(4, 10): p = p*a assert nthroot(mpf(p), n) == a mp.dps = 40 for n in range(10, 5000, 100): for a in [random.random()*10000, random.random()*10**100]: r = nthroot(a, n) r1 = pow(a, mpf(1)/n) assert r.ae(r1) r = nthroot(a, -n) r1 = pow(a, -mpf(1)/n) assert r.ae(r1) # XXX: this is broken right now # tests for nthroot rounding for rnd in ['nearest', 'up', 'down']: mp.rounding = rnd for n in [-5, -3, 3, 5]: prec = 50 for i in range(10): mp.prec = prec a = rand() mp.prec = 2*prec b = a**n mp.prec = prec r = nthroot(b, n) assert r == a mp.dps = 30 for n in range(3, 21): a = (random.random() + j*random.random()) assert nthroot(a, n).ae(pow(a, mpf(1)/n)) assert mpc_ae(nthroot(a, n), pow(a, mpf(1)/n)) a = (random.random()*10**100 + j*random.random()) r = nthroot(a, n) mp.dps += 4 r1 = pow(a, mpf(1)/n) mp.dps -= 4 assert r.ae(r1) assert mpc_ae(r, r1, eps) r = nthroot(a, -n) mp.dps += 4 r1 = pow(a, -mpf(1)/n) mp.dps -= 4 assert r.ae(r1) assert mpc_ae(r, r1, eps) mp.dps = 15 assert nthroot(4, 1) == 4 assert nthroot(4, 0) == 1 assert nthroot(4, -1) == 0.25 assert nthroot(inf, 1) == inf assert nthroot(inf, 2) == inf assert nthroot(inf, 3) == inf assert nthroot(inf, -1) == 0 assert nthroot(inf, -2) == 0 assert nthroot(inf, -3) == 0 assert nthroot(j, 1) == j assert nthroot(j, 0) == 1 assert nthroot(j, -1) == -j assert isnan(nthroot(nan, 1)) assert isnan(nthroot(nan, 0)) assert isnan(nthroot(nan, -1)) assert isnan(nthroot(inf, 0)) assert root(2,3) == nthroot(2,3) assert root(16,4,0) == 2 assert root(16,4,1) == 2j assert root(16,4,2) == -2 assert root(16,4,3) == -2j assert root(16,4,4) == 2 assert root(-125,3,1) == -5 def test_issue_136(): for dps in [20, 80]: mp.dps = dps r = nthroot(mpf('-1e-20'), 4) assert r.ae(mpf(10)**(-5) * (1 + j) * mpf(2)**(-0.5)) mp.dps = 80 assert nthroot('-1e-3', 4).ae(mpf(10)**(-3./4) * (1 + j)/sqrt(2)) assert nthroot('-1e-6', 4).ae((1 + j)/(10 * sqrt(20))) # Check that this doesn't take eternity to compute mp.dps = 20 assert nthroot('-1e100000000', 4).ae((1+j)*mpf('1e25000000')/sqrt(2)) mp.dps = 15 def test_mpcfun_real_imag(): mp.dps = 15 x = mpf(0.3) y = mpf(0.4) assert exp(mpc(x,0)) == exp(x) assert exp(mpc(0,y)) == mpc(cos(y),sin(y)) assert cos(mpc(x,0)) == cos(x) assert sin(mpc(x,0)) == sin(x) assert cos(mpc(0,y)) == cosh(y) assert sin(mpc(0,y)) == mpc(0,sinh(y)) assert cospi(mpc(x,0)) == cospi(x) assert sinpi(mpc(x,0)) == sinpi(x) assert cospi(mpc(0,y)).ae(cosh(pi*y)) assert sinpi(mpc(0,y)).ae(mpc(0,sinh(pi*y))) c, s = cospi_sinpi(mpc(x,0)) assert c == cospi(x) assert s == sinpi(x) c, s = cospi_sinpi(mpc(0,y)) assert c.ae(cosh(pi*y)) assert s.ae(mpc(0,sinh(pi*y))) c, s = cos_sin(mpc(x,0)) assert c == cos(x) assert s == sin(x) c, s = cos_sin(mpc(0,y)) assert c == cosh(y) assert s == mpc(0,sinh(y)) def test_perturbation_rounding(): mp.dps = 100 a = pi/10**50 b = -pi/10**50 c = 1 + a d = 1 + b mp.dps = 15 assert exp(a) == 1 assert exp(a, rounding='c') > 1 assert exp(b, rounding='c') == 1 assert exp(a, rounding='f') == 1 assert exp(b, rounding='f') < 1 assert cos(a) == 1 assert cos(a, rounding='c') == 1 assert cos(b, rounding='c') == 1 assert cos(a, rounding='f') < 1 assert cos(b, rounding='f') < 1 for f in [sin, atan, asinh, tanh]: assert f(a) == +a assert f(a, rounding='c') > a assert f(a, rounding='f') < a assert f(b) == +b assert f(b, rounding='c') > b assert f(b, rounding='f') < b for f in [asin, tan, sinh, atanh]: assert f(a) == +a assert f(b) == +b assert f(a, rounding='c') > a assert f(b, rounding='c') > b assert f(a, rounding='f') < a assert f(b, rounding='f') < b assert ln(c) == +a assert ln(d) == +b assert ln(c, rounding='c') > a assert ln(c, rounding='f') < a assert ln(d, rounding='c') > b assert ln(d, rounding='f') < b assert cosh(a) == 1 assert cosh(b) == 1 assert cosh(a, rounding='c') > 1 assert cosh(b, rounding='c') > 1 assert cosh(a, rounding='f') == 1 assert cosh(b, rounding='f') == 1 def test_integer_parts(): assert floor(3.2) == 3 assert ceil(3.2) == 4 assert floor(3.2+5j) == 3+5j assert ceil(3.2+5j) == 4+5j def test_complex_parts(): assert fabs('3') == 3 assert fabs(3+4j) == 5 assert re(3) == 3 assert re(1+4j) == 1 assert im(3) == 0 assert im(1+4j) == 4 assert conj(3) == 3 assert conj(3+4j) == 3-4j assert mpf(3).conjugate() == 3 def test_cospi_sinpi(): assert sinpi(0) == 0 assert sinpi(0.5) == 1 assert sinpi(1) == 0 assert sinpi(1.5) == -1 assert sinpi(2) == 0 assert sinpi(2.5) == 1 assert sinpi(-0.5) == -1 assert cospi(0) == 1 assert cospi(0.5) == 0 assert cospi(1) == -1 assert cospi(1.5) == 0 assert cospi(2) == 1 assert cospi(2.5) == 0 assert cospi(-0.5) == 0 assert cospi(100000000000.25).ae(sqrt(2)/2) a = cospi(2+3j) assert a.real.ae(cos((2+3j)*pi).real) assert a.imag == 0 b = sinpi(2+3j) assert b.imag.ae(sin((2+3j)*pi).imag) assert b.real == 0 mp.dps = 35 x1 = mpf(10000) - mpf('1e-15') x2 = mpf(10000) + mpf('1e-15') x3 = mpf(10000.5) - mpf('1e-15') x4 = mpf(10000.5) + mpf('1e-15') x5 = mpf(10001) - mpf('1e-15') x6 = mpf(10001) + mpf('1e-15') x7 = mpf(10001.5) - mpf('1e-15') x8 = mpf(10001.5) + mpf('1e-15') mp.dps = 15 M = 10**15 assert (sinpi(x1)*M).ae(-pi) assert (sinpi(x2)*M).ae(pi) assert (cospi(x3)*M).ae(pi) assert (cospi(x4)*M).ae(-pi) assert (sinpi(x5)*M).ae(pi) assert (sinpi(x6)*M).ae(-pi) assert (cospi(x7)*M).ae(-pi) assert (cospi(x8)*M).ae(pi) assert 0.999 < cospi(x1, rounding='d') < 1 assert 0.999 < cospi(x2, rounding='d') < 1 assert 0.999 < sinpi(x3, rounding='d') < 1 assert 0.999 < sinpi(x4, rounding='d') < 1 assert -1 < cospi(x5, rounding='d') < -0.999 assert -1 < cospi(x6, rounding='d') < -0.999 assert -1 < sinpi(x7, rounding='d') < -0.999 assert -1 < sinpi(x8, rounding='d') < -0.999 assert (sinpi(1e-15)*M).ae(pi) assert (sinpi(-1e-15)*M).ae(-pi) assert cospi(1e-15) == 1 assert cospi(1e-15, rounding='d') < 1 def test_expj(): assert expj(0) == 1 assert expj(1).ae(exp(j)) assert expj(j).ae(exp(-1)) assert expj(1+j).ae(exp(j*(1+j))) assert expjpi(0) == 1 assert expjpi(1).ae(exp(j*pi)) assert expjpi(j).ae(exp(-pi)) assert expjpi(1+j).ae(exp(j*pi*(1+j))) assert expjpi(-10**15 * j).ae('2.22579818340535731e+1364376353841841') def test_sinc(): assert sinc(0) == sincpi(0) == 1 assert sinc(inf) == sincpi(inf) == 0 assert sinc(-inf) == sincpi(-inf) == 0 assert sinc(2).ae(0.45464871341284084770) assert sinc(2+3j).ae(0.4463290318402435457-2.7539470277436474940j) assert sincpi(2) == 0 assert sincpi(1.5).ae(-0.212206590789193781) def test_fibonacci(): mp.dps = 15 assert [fibonacci(n) for n in range(-5, 10)] == \ [5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34] assert fib(2.5).ae(1.4893065462657091) assert fib(3+4j).ae(-5248.51130728372 - 14195.962288353j) assert fib(1000).ae(4.3466557686937455e+208) assert str(fib(10**100)) == '6.24499112864607e+2089876402499787337692720892375554168224592399182109535392875613974104853496745963277658556235103534' mp.dps = 2100 a = fib(10000) assert a % 10**10 == 9947366875 mp.dps = 15 assert fibonacci(inf) == inf assert fib(3+0j) == 2 def test_call_with_dps(): mp.dps = 15 assert abs(exp(1, dps=30)-e(dps=35)) < 1e-29 def test_tanh(): mp.dps = 15 assert tanh(0) == 0 assert tanh(inf) == 1 assert tanh(-inf) == -1 assert isnan(tanh(nan)) assert tanh(mpc('inf', '0')) == 1 def test_atanh(): mp.dps = 15 assert atanh(0) == 0 assert atanh(0.5).ae(0.54930614433405484570) assert atanh(-0.5).ae(-0.54930614433405484570) assert atanh(1) == inf assert atanh(-1) == -inf assert isnan(atanh(nan)) assert isinstance(atanh(1), mpf) assert isinstance(atanh(-1), mpf) # Limits at infinity jpi2 = j*pi/2 assert atanh(inf).ae(-jpi2) assert atanh(-inf).ae(jpi2) assert atanh(mpc(inf,-1)).ae(-jpi2) assert atanh(mpc(inf,0)).ae(-jpi2) assert atanh(mpc(inf,1)).ae(jpi2) assert atanh(mpc(1,inf)).ae(jpi2) assert atanh(mpc(0,inf)).ae(jpi2) assert atanh(mpc(-1,inf)).ae(jpi2) assert atanh(mpc(-inf,1)).ae(jpi2) assert atanh(mpc(-inf,0)).ae(jpi2) assert atanh(mpc(-inf,-1)).ae(-jpi2) assert atanh(mpc(-1,-inf)).ae(-jpi2) assert atanh(mpc(0,-inf)).ae(-jpi2) assert atanh(mpc(1,-inf)).ae(-jpi2) def test_expm1(): mp.dps = 15 assert expm1(0) == 0 assert expm1(3).ae(exp(3)-1) assert expm1(inf) == inf assert expm1(1e-50).ae(1e-50) assert (expm1(1e-10)*1e10).ae(1.00000000005) def test_log1p(): mp.dps = 15 assert log1p(0) == 0 assert log1p(3).ae(log(1+3)) assert log1p(inf) == inf assert log1p(1e-50).ae(1e-50) assert (log1p(1e-10)*1e10).ae(0.99999999995) def test_powm1(): mp.dps = 15 assert powm1(2,3) == 7 assert powm1(-1,2) == 0 assert powm1(-1,0) == 0 assert powm1(-2,0) == 0 assert powm1(3+4j,0) == 0 assert powm1(0,1) == -1 assert powm1(0,0) == 0 assert powm1(1,0) == 0 assert powm1(1,2) == 0 assert powm1(1,3+4j) == 0 assert powm1(1,5) == 0 assert powm1(j,4) == 0 assert powm1(-j,4) == 0 assert (powm1(2,1e-100)*1e100).ae(ln2) assert powm1(2,'1e-100000000000') != 0 assert (powm1(fadd(1,1e-100,exact=True), 5)*1e100).ae(5) def test_unitroots(): assert unitroots(1) == [1] assert unitroots(2) == [1, -1] a, b, c = unitroots(3) assert a == 1 assert b.ae(-0.5 + 0.86602540378443864676j) assert c.ae(-0.5 - 0.86602540378443864676j) assert unitroots(1, primitive=True) == [1] assert unitroots(2, primitive=True) == [-1] assert unitroots(3, primitive=True) == unitroots(3)[1:] assert unitroots(4, primitive=True) == [j, -j] assert len(unitroots(17, primitive=True)) == 16 assert len(unitroots(16, primitive=True)) == 8 def test_cyclotomic(): mp.dps = 15 assert [cyclotomic(n,1) for n in range(31)] == [1,0,2,3,2,5,1,7,2,3,1,11,1,13,1,1,2,17,1,19,1,1,1,23,1,5,1,3,1,29,1] assert [cyclotomic(n,-1) for n in range(31)] == [1,-2,0,1,2,1,3,1,2,1,5,1,1,1,7,1,2,1,3,1,1,1,11,1,1,1,13,1,1,1,1] assert [cyclotomic(n,j) for n in range(21)] == [1,-1+j,1+j,j,0,1,-j,j,2,-j,1,j,3,1,-j,1,2,1,j,j,5] assert [cyclotomic(n,-j) for n in range(21)] == [1,-1-j,1-j,-j,0,1,j,-j,2,j,1,-j,3,1,j,1,2,1,-j,-j,5] assert cyclotomic(1624,j) == 1 assert cyclotomic(33600,j) == 1 u = sqrt(j, prec=500) assert cyclotomic(8, u).ae(0) assert cyclotomic(30, u).ae(5.8284271247461900976) assert cyclotomic(2040, u).ae(1) assert cyclotomic(0,2.5) == 1 assert cyclotomic(1,2.5) == 2.5-1 assert cyclotomic(2,2.5) == 2.5+1 assert cyclotomic(3,2.5) == 2.5**2 + 2.5 + 1 assert cyclotomic(7,2.5) == 406.234375