import pytest from mpmath import * from mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \ Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton def test_findroot(): # old tests, assuming secant mp.dps = 15 assert findroot(lambda x: 4*x-3, mpf(5)).ae(0.75) assert findroot(sin, mpf(3)).ae(pi) assert findroot(sin, (mpf(3), mpf(3.14))).ae(pi) assert findroot(lambda x: x*x+1, mpc(2+2j)).ae(1j) # test all solvers with 1 starting point f = lambda x: cos(x) for solver in [Newton, Secant, MNewton, Muller, ANewton]: x = findroot(f, 2., solver=solver) assert abs(f(x)) < eps # test all solvers with interval of 2 points for solver in [Secant, Muller, Bisection, Illinois, Pegasus, Anderson, Ridder]: x = findroot(f, (1., 2.), solver=solver) assert abs(f(x)) < eps # test types f = lambda x: (x - 2)**2 assert isinstance(findroot(f, 1, tol=1e-10), mpf) assert isinstance(iv.findroot(f, 1., tol=1e-10), iv.mpf) assert isinstance(fp.findroot(f, 1, tol=1e-10), float) assert isinstance(fp.findroot(f, 1+0j, tol=1e-10), complex) # issue 401 with pytest.raises(ValueError): with workprec(2): findroot(lambda x: x**2 - 4456178*x + 60372201703370, mpc(real='5.278e+13', imag='-5.278e+13')) # issue 192 with pytest.raises(ValueError): findroot(lambda x: -1, 0) # issue 387 with pytest.raises(ValueError): findroot(lambda p: (1 - p)**30 - 1, 0.9) def test_bisection(): # issue 273 assert findroot(lambda x: x**2-1,(0,2),solver='bisect') == 1 def test_mnewton(): f = lambda x: polyval([1,3,3,1],x) x = findroot(f, -0.9, solver='mnewton') assert abs(f(x)) < eps def test_anewton(): f = lambda x: (x - 2)**100 x = findroot(f, 1., solver=ANewton) assert abs(f(x)) < eps def test_muller(): f = lambda x: (2 + x)**3 + 2 x = findroot(f, 1., solver=Muller) assert abs(f(x)) < eps def test_multiplicity(): for i in range(1, 5): assert multiplicity(lambda x: (x - 1)**i, 1) == i assert multiplicity(lambda x: x**2, 1) == 0 def test_multidimensional(): def f(*x): return [3*x[0]**2-2*x[1]**2-1, x[0]**2-2*x[0]+x[1]**2+2*x[1]-8] assert mnorm(jacobian(f, (1,-2)) - matrix([[6,8],[0,-2]]),1) < 1.e-7 for x, error in MDNewton(mp, f, (1,-2), verbose=0, norm=lambda x: norm(x, inf)): pass assert norm(f(*x), 2) < 1e-14 # The Chinese mathematician Zhu Shijie was the very first to solve this # nonlinear system 700 years ago f1 = lambda x, y: -x + 2*y f2 = lambda x, y: (x**2 + x*(y**2 - 2) - 4*y) / (x + 4) f3 = lambda x, y: sqrt(x**2 + y**2) def f(x, y): f1x = f1(x, y) return (f2(x, y) - f1x, f3(x, y) - f1x) x = findroot(f, (10, 10)) assert [int(round(i)) for i in x] == [3, 4] def test_trivial(): assert findroot(lambda x: 0, 1) == 1 assert findroot(lambda x: x, 0) == 0 #assert findroot(lambda x, y: x + y, (1, -1)) == (1, -1)