""" Implements the PSLQ algorithm for integer relation detection, and derivative algorithms for constant recognition. """ from .libmp.backend import xrange from .libmp import int_types, sqrt_fixed # round to nearest integer (can be done more elegantly...) def round_fixed(x, prec): return ((x + (1<<(prec-1))) >> prec) << prec class IdentificationMethods(object): pass def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False): r""" Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)`` uses the PSLQ algorithm to find a list of integers `[c_0, c_1, ..., c_n]` such that .. math :: |c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol} and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to 3/4 of the working precision. **Examples** Find rational approximations for `\pi`:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> pslq([-1, pi], tol=0.01) [22, 7] >>> pslq([-1, pi], tol=0.001) [355, 113] >>> mpf(22)/7; mpf(355)/113; +pi 3.14285714285714 3.14159292035398 3.14159265358979 Pi is not a rational number with denominator less than 1000:: >>> pslq([-1, pi]) >>> To within the standard precision, it can however be approximated by at least one rational number with denominator less than `10^{12}`:: >>> p, q = pslq([-1, pi], maxcoeff=10**12) >>> print(p); print(q) 238410049439 75888275702 >>> mpf(p)/q 3.14159265358979 The PSLQ algorithm can be applied to long vectors. For example, we can investigate the rational (in)dependence of integer square roots:: >>> mp.dps = 30 >>> pslq([sqrt(n) for n in range(2, 5+1)]) >>> >>> pslq([sqrt(n) for n in range(2, 6+1)]) >>> >>> pslq([sqrt(n) for n in range(2, 8+1)]) [2, 0, 0, 0, 0, 0, -1] **Machin formulas** A famous formula for `\pi` is Machin's, .. math :: \frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239 There are actually infinitely many formulas of this type. Two others are .. math :: \frac{\pi}{4} = \operatorname{acot} 1 \frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57 + 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443 We can easily verify the formulas using the PSLQ algorithm:: >>> mp.dps = 30 >>> pslq([pi/4, acot(1)]) [1, -1] >>> pslq([pi/4, acot(5), acot(239)]) [1, -4, 1] >>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)]) [1, -12, -32, 5, -12] We could try to generate a custom Machin-like formula by running the PSLQ algorithm with a few inverse cotangent values, for example acot(2), acot(3) ... acot(10). Unfortunately, there is a linear dependence among these values, resulting in only that dependence being detected, with a zero coefficient for `\pi`:: >>> pslq([pi] + [acot(n) for n in range(2,11)]) [0, 1, -1, 0, 0, 0, -1, 0, 0, 0] We get better luck by removing linearly dependent terms:: >>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)]) [1, -8, 0, 0, 4, 0, 0, 0] In other words, we found the following formula:: >>> 8*acot(2) - 4*acot(7) 3.14159265358979323846264338328 >>> +pi 3.14159265358979323846264338328 **Algorithm** This is a fairly direct translation to Python of the pseudocode given by David Bailey, "The PSLQ Integer Relation Algorithm": http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html The present implementation uses fixed-point instead of floating-point arithmetic, since this is significantly (about 7x) faster. """ n = len(x) if n < 2: raise ValueError("n cannot be less than 2") # At too low precision, the algorithm becomes meaningless prec = ctx.prec if prec < 53: raise ValueError("prec cannot be less than 53") if verbose and prec // max(2,n) < 5: print("Warning: precision for PSLQ may be too low") target = int(prec * 0.75) if tol is None: tol = ctx.mpf(2)**(-target) else: tol = ctx.convert(tol) extra = 60 prec += extra if verbose: print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol))) tol = ctx.to_fixed(tol, prec) assert tol # Convert to fixed-point numbers. The dummy None is added so we can # use 1-based indexing. (This just allows us to be consistent with # Bailey's indexing. The algorithm is 100 lines long, so debugging # a single wrong index can be painful.) x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x] # Sanity check on magnitudes minx = min(abs(xx) for xx in x[1:]) if not minx: raise ValueError("PSLQ requires a vector of nonzero numbers") if minx < tol//100: if verbose: print("STOPPING: (one number is too small)") return None g = sqrt_fixed((4<> prec) s[k] = sqrt_fixed(t, prec) t = s[1] y = x[:] for k in xrange(1, n+1): y[k] = (x[k] << prec) // t s[k] = (s[k] << prec) // t # step 3 for i in xrange(1, n+1): for j in xrange(i+1, n): H[i,j] = 0 if i <= n-1: if s[i]: H[i,i] = (s[i+1] << prec) // s[i] else: H[i,i] = 0 for j in range(1, i): sjj1 = s[j]*s[j+1] if sjj1: H[i,j] = ((-y[i]*y[j])<> prec) for k in xrange(1, j+1): H[i,k] = H[i,k] - (t*H[j,k] >> prec) for k in xrange(1, n+1): A[i,k] = A[i,k] - (t*A[j,k] >> prec) B[k,j] = B[k,j] + (t*B[k,i] >> prec) # Main algorithm for REP in range(maxsteps): # Step 1 m = -1 szmax = -1 for i in range(1, n): h = H[i,i] sz = (g**i * abs(h)) >> (prec*(i-1)) if sz > szmax: m = i szmax = sz # Step 2 y[m], y[m+1] = y[m+1], y[m] for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i] for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i] for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m] # Step 3 if m <= n - 2: t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec) # A zero element probably indicates that the precision has # been exhausted. XXX: this could be spurious, due to # using fixed-point arithmetic if not t0: break t1 = (H[m,m] << prec) // t0 t2 = (H[m,m+1] << prec) // t0 for i in xrange(m, n+1): t3 = H[i,m] t4 = H[i,m+1] H[i,m] = (t1*t3+t2*t4) >> prec H[i,m+1] = (-t2*t3+t1*t4) >> prec # Step 4 for i in xrange(m+1, n+1): for j in xrange(min(i-1, m+1), 0, -1): try: t = round_fixed((H[i,j] << prec)//H[j,j], prec) # Precision probably exhausted except ZeroDivisionError: break y[j] = y[j] + ((t*y[i]) >> prec) for k in xrange(1, j+1): H[i,k] = H[i,k] - (t*H[j,k] >> prec) for k in xrange(1, n+1): A[i,k] = A[i,k] - (t*A[j,k] >> prec) B[k,j] = B[k,j] + (t*B[k,i] >> prec) # Until a relation is found, the error typically decreases # slowly (e.g. a factor 1-10) with each step TODO: we could # compare err from two successive iterations. If there is a # large drop (several orders of magnitude), that indicates a # "high quality" relation was detected. Reporting this to # the user somehow might be useful. best_err = maxcoeff<> prec) for j in \ range(1,n+1)] if max(abs(v) for v in vec) < maxcoeff: if verbose: print("FOUND relation at iter %i/%i, error: %s" % \ (REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1))) return vec best_err = min(err, best_err) # Calculate a lower bound for the norm. We could do this # more exactly (using the Euclidean norm) but there is probably # no practical benefit. recnorm = max(abs(h) for h in H.values()) if recnorm: norm = ((1 << (2*prec)) // recnorm) >> prec norm //= 100 else: norm = ctx.inf if verbose: print("%i/%i: Error: %8s Norm: %s" % \ (REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm)) if norm >= maxcoeff: break if verbose: print("CANCELLING after step %i/%i." % (REP, maxsteps)) print("Could not find an integer relation. Norm bound: %s" % norm) return None def findpoly(ctx, x, n=1, **kwargs): r""" ``findpoly(x, n)`` returns the coefficients of an integer polynomial `P` of degree at most `n` such that `P(x) \approx 0`. If no polynomial having `x` as a root can be found, :func:`~mpmath.findpoly` returns ``None``. :func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ..., `[1, x, x^2, .., x^n]` as input. Keyword arguments given to :func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In particular, you can specify a tolerance for `P(x)` with ``tol`` and a maximum permitted coefficient size with ``maxcoeff``. For large values of `n`, it is recommended to run :func:`~mpmath.findpoly` at high precision; preferably 50 digits or more. **Examples** By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear polynomial with a rational root:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> findpoly(0.7) [-10, 7] The generated coefficient list is valid input to ``polyval`` and ``polyroots``:: >>> nprint(polyval(findpoly(phi, 2), phi), 1) -2.0e-16 >>> for r in polyroots(findpoly(phi, 2)): ... print(r) ... -0.618033988749895 1.61803398874989 Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are solutions to quadratic equations. As we find here, `1+\sqrt 2` is a root of the polynomial `x^2 - 2x - 1`:: >>> findpoly(1+sqrt(2), 2) [1, -2, -1] >>> findroot(lambda x: x**2 - 2*x - 1, 1) 2.4142135623731 Despite only containing square roots, the following number results in a polynomial of degree 4:: >>> findpoly(sqrt(2)+sqrt(3), 4) [1, 0, -10, 0, 1] In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of `r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of lower degree having `r` as a root does not exist. Given sufficient precision, :func:`~mpmath.findpoly` will usually find the correct minimal polynomial of a given algebraic number. **Non-algebraic numbers** If :func:`~mpmath.findpoly` fails to find a polynomial with given coefficient size and tolerance constraints, that means no such polynomial exists. We can verify that `\pi` is not an algebraic number of degree 3 with coefficients less than 1000:: >>> mp.dps = 15 >>> findpoly(pi, 3) >>> It is always possible to find an algebraic approximation of a number using one (or several) of the following methods: 1. Increasing the permitted degree 2. Allowing larger coefficients 3. Reducing the tolerance One example of each method is shown below:: >>> mp.dps = 15 >>> findpoly(pi, 4) [95, -545, 863, -183, -298] >>> findpoly(pi, 3, maxcoeff=10000) [836, -1734, -2658, -457] >>> findpoly(pi, 3, tol=1e-7) [-4, 22, -29, -2] It is unknown whether Euler's constant is transcendental (or even irrational). We can use :func:`~mpmath.findpoly` to check that if is an algebraic number, its minimal polynomial must have degree at least 7 and a coefficient of magnitude at least 1000000:: >>> mp.dps = 200 >>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000) >>> Note that the high precision and strict tolerance is necessary for such high-degree runs, since otherwise unwanted low-accuracy approximations will be detected. It may also be necessary to set maxsteps high to prevent a premature exit (before the coefficient bound has been reached). Running with ``verbose=True`` to get an idea what is happening can be useful. """ x = ctx.mpf(x) if n < 1: raise ValueError("n cannot be less than 1") if x == 0: return [1, 0] xs = [ctx.mpf(1)] for i in range(1,n+1): xs.append(x**i) a = ctx.pslq(xs, **kwargs) if a is not None: return a[::-1] def fracgcd(p, q): x, y = p, q while y: x, y = y, x % y if x != 1: p //= x q //= x if q == 1: return p return p, q def pslqstring(r, constants): q = r[0] r = r[1:] s = [] for i in range(len(r)): p = r[i] if p: z = fracgcd(-p,q) cs = constants[i][1] if cs == '1': cs = '' else: cs = '*' + cs if isinstance(z, int_types): if z > 0: term = str(z) + cs else: term = ("(%s)" % z) + cs else: term = ("(%s/%s)" % z) + cs s.append(term) s = ' + '.join(s) if '+' in s or '*' in s: s = '(' + s + ')' return s or '0' def prodstring(r, constants): q = r[0] r = r[1:] num = [] den = [] for i in range(len(r)): p = r[i] if p: z = fracgcd(-p,q) cs = constants[i][1] if isinstance(z, int_types): if abs(z) == 1: t = cs else: t = '%s**%s' % (cs, abs(z)) ([num,den][z<0]).append(t) else: t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1]) ([num,den][z[0]<0]).append(t) num = '*'.join(num) den = '*'.join(den) if num and den: return "(%s)/(%s)" % (num, den) if num: return num if den: return "1/(%s)" % den def quadraticstring(ctx,t,a,b,c): if c < 0: a,b,c = -a,-b,-c u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c) u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c) if abs(u1-t) < abs(u2-t): if b: s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c) else: s = '(sqrt(%s)/%s)' % (-4*a*c,2*c) else: if b: s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c) else: s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c) return s # Transformation y = f(x,c), with inverse function x = f(y,c) # The third entry indicates whether the transformation is # redundant when c = 1 transforms = [ (lambda ctx,x,c: x*c, '$y/$c', 0), (lambda ctx,x,c: x/c, '$c*$y', 1), (lambda ctx,x,c: c/x, '$c/$y', 0), (lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0), (lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1), (lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0), (lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1), (lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1), (lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1), (lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0), (lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1), (lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0), (lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1), (lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1), (lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1), (lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0), (lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1), (lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0), (lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1), (lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1), (lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0), (lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0), (lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1), (lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0), (lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1), (lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1), (lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0), ] def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False, verbose=False): r""" Given a real number `x`, ``identify(x)`` attempts to find an exact formula for `x`. This formula is returned as a string. If no match is found, ``None`` is returned. With ``full=True``, a list of matching formulas is returned. As a simple example, :func:`~mpmath.identify` will find an algebraic formula for the golden ratio:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> identify(phi) '((1+sqrt(5))/2)' :func:`~mpmath.identify` can identify simple algebraic numbers and simple combinations of given base constants, as well as certain basic transformations thereof. More specifically, :func:`~mpmath.identify` looks for the following: 1. Fractions 2. Quadratic algebraic numbers 3. Rational linear combinations of the base constants 4. Any of the above after first transforming `x` into `f(x)` where `f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either directly or with `x` or `f(x)` multiplied or divided by one of the base constants 5. Products of fractional powers of the base constants and small integers Base constants can be given as a list of strings representing mpmath expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical values and use the original strings for the output), or as a dict of formula:value pairs. In order not to produce spurious results, :func:`~mpmath.identify` should be used with high precision; preferably 50 digits or more. **Examples** Simple identifications can be performed safely at standard precision. Here the default recognition of rational, algebraic, and exp/log of algebraic numbers is demonstrated:: >>> mp.dps = 15 >>> identify(0.22222222222222222) '(2/9)' >>> identify(1.9662210973805663) 'sqrt(((24+sqrt(48))/8))' >>> identify(4.1132503787829275) 'exp((sqrt(8)/2))' >>> identify(0.881373587019543) 'log(((2+sqrt(8))/2))' By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard precision it finds a not too useful approximation. At slightly increased precision, this approximation is no longer accurate enough and :func:`~mpmath.identify` more correctly returns ``None``:: >>> identify(pi) '(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))' >>> mp.dps = 30 >>> identify(pi) >>> Numbers such as `\pi`, and simple combinations of user-defined constants, can be identified if they are provided explicitly:: >>> identify(3*pi-2*e, ['pi', 'e']) '(3*pi + (-2)*e)' Here is an example using a dict of constants. Note that the constants need not be "atomic"; :func:`~mpmath.identify` can just as well express the given number in terms of expressions given by formulas:: >>> identify(pi+e, {'a':pi+2, 'b':2*e}) '((-2) + 1*a + (1/2)*b)' Next, we attempt some identifications with a set of base constants. It is necessary to increase the precision a bit. >>> mp.dps = 50 >>> base = ['sqrt(2)','pi','log(2)'] >>> identify(0.25, base) '(1/4)' >>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base) '(2*sqrt(2) + 3*pi + (5/7)*log(2))' >>> identify(exp(pi+2), base) 'exp((2 + 1*pi))' >>> identify(1/(3+sqrt(2)), base) '((3/7) + (-1/7)*sqrt(2))' >>> identify(sqrt(2)/(3*pi+4), base) 'sqrt(2)/(4 + 3*pi)' >>> identify(5**(mpf(1)/3)*pi*log(2)**2, base) '5**(1/3)*pi*log(2)**2' An example of an erroneous solution being found when too low precision is used:: >>> mp.dps = 15 >>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)']) '((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))' >>> mp.dps = 50 >>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)']) '1/(3*pi + (-4)*e + 2*sqrt(2))' **Finding approximate solutions** The tolerance ``tol`` defaults to 3/4 of the working precision. Lowering the tolerance is useful for finding approximate matches. We can for example try to generate approximations for pi:: >>> mp.dps = 15 >>> identify(pi, tol=1e-2) '(22/7)' >>> identify(pi, tol=1e-3) '(355/113)' >>> identify(pi, tol=1e-10) '(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))' With ``full=True``, and by supplying a few base constants, ``identify`` can generate almost endless lists of approximations for any number (the output below has been truncated to show only the first few):: >>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True): ... print(p) ... # doctest: +ELLIPSIS e/log((6 + (-4/3)*e)) (3**3*5*e*catalan**2)/(2*7**2) sqrt(((-13) + 1*e + 22*catalan)) log(((-6) + 24*e + 4*catalan)/e) exp(catalan*((-1/5) + (8/15)*e)) catalan*(6 + (-6)*e + 15*catalan) sqrt((5 + 26*e + (-3)*catalan))/e e*sqrt(((-27) + 2*e + 25*catalan)) log(((-1) + (-11)*e + 59*catalan)) ((3/20) + (21/20)*e + (3/20)*catalan) ... The numerical values are roughly as close to `\pi` as permitted by the specified tolerance: >>> e/log(6-4*e/3) 3.14157719846001 >>> 135*e*catalan**2/98 3.14166950419369 >>> sqrt(e-13+22*catalan) 3.14158000062992 >>> log(24*e-6+4*catalan)-1 3.14158791577159 **Symbolic processing** The output formula can be evaluated as a Python expression. Note however that if fractions (like '2/3') are present in the formula, Python's :func:`~mpmath.eval()` may erroneously perform integer division. Note also that the output is not necessarily in the algebraically simplest form:: >>> identify(sqrt(2)) '(sqrt(8)/2)' As a solution to both problems, consider using SymPy's :func:`~mpmath.sympify` to convert the formula into a symbolic expression. SymPy can be used to pretty-print or further simplify the formula symbolically:: >>> from sympy import sympify # doctest: +SKIP >>> sympify(identify(sqrt(2))) # doctest: +SKIP 2**(1/2) Sometimes :func:`~mpmath.identify` can simplify an expression further than a symbolic algorithm:: >>> from sympy import simplify # doctest: +SKIP >>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)') # doctest: +SKIP >>> x # doctest: +SKIP (3/2 - 5**(1/2)/2)**(-1/2) >>> x = simplify(x) # doctest: +SKIP >>> x # doctest: +SKIP 2/(6 - 2*5**(1/2))**(1/2) >>> mp.dps = 30 # doctest: +SKIP >>> x = sympify(identify(x.evalf(30))) # doctest: +SKIP >>> x # doctest: +SKIP 1/2 + 5**(1/2)/2 (In fact, this functionality is available directly in SymPy as the function :func:`~mpmath.nsimplify`, which is essentially a wrapper for :func:`~mpmath.identify`.) **Miscellaneous issues and limitations** The input `x` must be a real number. All base constants must be positive real numbers and must not be rationals or rational linear combinations of each other. The worst-case computation time grows quickly with the number of base constants. Already with 3 or 4 base constants, :func:`~mpmath.identify` may require several seconds to finish. To search for relations among a large number of constants, you should consider using :func:`~mpmath.pslq` directly. The extended transformations are applied to x, not the constants separately. As a result, ``identify`` will for example be able to recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but not ``2*exp(pi)+3``. It will be able to recognize the latter if ``exp(pi)`` is given explicitly as a base constant. """ solutions = [] def addsolution(s): if verbose: print("Found: ", s) solutions.append(s) x = ctx.mpf(x) # Further along, x will be assumed positive if x == 0: if full: return ['0'] else: return '0' if x < 0: sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose) if sol is None: return sol if full: return ["-(%s)"%s for s in sol] else: return "-(%s)" % sol if tol: tol = ctx.mpf(tol) else: tol = ctx.eps**0.7 M = maxcoeff if constants: if isinstance(constants, dict): constants = [(ctx.mpf(v), name) for (name, v) in sorted(constants.items())] else: namespace = dict((name, getattr(ctx,name)) for name in dir(ctx)) constants = [(eval(p, namespace), p) for p in constants] else: constants = [] # We always want to find at least rational terms if 1 not in [value for (name, value) in constants]: constants = [(ctx.mpf(1), '1')] + constants # PSLQ with simple algebraic and functional transformations for ft, ftn, red in transforms: for c, cn in constants: if red and cn == '1': continue t = ft(ctx,x,c) # Prevent exponential transforms from wreaking havoc if abs(t) > M**2 or abs(t) < tol: continue # Linear combination of base constants r = ctx.pslq([t] + [a[0] for a in constants], tol, M) s = None if r is not None and max(abs(uw) for uw in r) <= M and r[0]: s = pslqstring(r, constants) # Quadratic algebraic numbers else: q = ctx.pslq([ctx.one, t, t**2], tol, M) if q is not None and len(q) == 3 and q[2]: aa, bb, cc = q if max(abs(aa),abs(bb),abs(cc)) <= M: s = quadraticstring(ctx,t,aa,bb,cc) if s: if cn == '1' and ('/$c' in ftn): s = ftn.replace('$y', s).replace('/$c', '') else: s = ftn.replace('$y', s).replace('$c', cn) addsolution(s) if not full: return solutions[0] if verbose: print(".") # Check for a direct multiplicative formula if x != 1: # Allow fractional powers of fractions ilogs = [2,3,5,7] # Watch out for existing fractional powers of fractions logs = [] for a, s in constants: if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs): logs.append((ctx.ln(a), s)) logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M) if r is not None and max(abs(uw) for uw in r) <= M and r[0]: addsolution(prodstring(r, logs)) if not full: return solutions[0] if full: return sorted(solutions, key=len) else: return None IdentificationMethods.pslq = pslq IdentificationMethods.findpoly = findpoly IdentificationMethods.identify = identify if __name__ == '__main__': import doctest doctest.testmod()