""" Code to support various backends in a plugin dispatch architecture. Create a Dispatcher ------------------- To be a valid backend, a package must register an entry_point of `networkx.backends` with a key pointing to the handler. For example:: entry_points={'networkx.backends': 'sparse = networkx_backend_sparse'} The backend must create a Graph-like object which contains an attribute ``__networkx_backend__`` with a value of the entry point name. Continuing the example above:: class WrappedSparse: __networkx_backend__ = "sparse" ... When a dispatchable NetworkX algorithm encounters a Graph-like object with a ``__networkx_backend__`` attribute, it will look for the associated dispatch object in the entry_points, load it, and dispatch the work to it. Testing ------- To assist in validating the backend algorithm implementations, if an environment variable ``NETWORKX_TEST_BACKEND`` is set to a registered backend key, the dispatch machinery will automatically convert regular networkx Graphs and DiGraphs to the backend equivalent by calling ``.convert_from_nx(G, edge_attrs=edge_attrs, name=name)``. Set ``NETWORKX_FALLBACK_TO_NX`` environment variable to have tests use networkx graphs for algorithms not implemented by the backend. The arguments to ``convert_from_nx`` are: - ``G`` : networkx Graph - ``edge_attrs`` : dict, optional Dict that maps edge attributes to default values if missing in ``G``. If None, then no edge attributes will be converted and default may be 1. - ``node_attrs``: dict, optional Dict that maps node attribute to default values if missing in ``G``. If None, then no node attributes will be converted. - ``preserve_edge_attrs`` : bool Whether to preserve all edge attributes. - ``preserve_node_attrs`` : bool Whether to preserve all node attributes. - ``preserve_graph_attrs`` : bool Whether to preserve all graph attributes. - ``preserve_all_attrs`` : bool Whether to preserve all graph, node, and edge attributes. - ``name`` : str The name of the algorithm. - ``graph_name`` : str The name of the graph argument being converted. The converted object is then passed to the backend implementation of the algorithm. The result is then passed to ``.convert_to_nx(result, name=name)`` to convert back to a form expected by the NetworkX tests. By defining ``convert_from_nx`` and ``convert_to_nx`` methods and setting the environment variable, NetworkX will automatically route tests on dispatchable algorithms to the backend, allowing the full networkx test suite to be run against the backend implementation. Example pytest invocation:: NETWORKX_TEST_BACKEND=sparse pytest --pyargs networkx Dispatchable algorithms which are not implemented by the backend will cause a ``pytest.xfail()``, giving some indication that not all tests are working, while avoiding causing an explicit failure. If a backend only partially implements some algorithms, it can define a ``can_run(name, args, kwargs)`` function that returns True or False indicating whether it can run the algorithm with the given arguments. A special ``on_start_tests(items)`` function may be defined by the backend. It will be called with the list of NetworkX tests discovered. Each item is a test object that can be marked as xfail if the backend does not support the test using `item.add_marker(pytest.mark.xfail(reason=...))`. """ import inspect import os import sys import warnings from functools import partial from importlib.metadata import entry_points from ..exception import NetworkXNotImplemented __all__ = ["_dispatch"] def _get_backends(group, *, load_and_call=False): if sys.version_info < (3, 10): eps = entry_points() if group not in eps: return {} items = eps[group] else: items = entry_points(group=group) rv = {} for ep in items: if ep.name in rv: warnings.warn( f"networkx backend defined more than once: {ep.name}", RuntimeWarning, stacklevel=2, ) elif load_and_call: try: rv[ep.name] = ep.load()() except Exception as exc: warnings.warn( f"Error encountered when loading info for backend {ep.name}: {exc}", RuntimeWarning, stacklevel=2, ) else: rv[ep.name] = ep # nx-loopback backend is only available when testing (added in conftest.py) rv.pop("nx-loopback", None) return rv # Rename "plugin" to "backend", and give backends a release cycle to update. backends = _get_backends("networkx.plugins") backend_info = _get_backends("networkx.plugin_info", load_and_call=True) backends.update(_get_backends("networkx.backends")) backend_info.update(_get_backends("networkx.backend_info", load_and_call=True)) # Load and cache backends on-demand _loaded_backends = {} # type: ignore[var-annotated] def _load_backend(backend_name): if backend_name in _loaded_backends: return _loaded_backends[backend_name] rv = _loaded_backends[backend_name] = backends[backend_name].load() return rv _registered_algorithms = {} class _dispatch: """Dispatches to a backend algorithm based on input graph types. Parameters ---------- func : function name : str, optional The name of the algorithm to use for dispatching. If not provided, the name of ``func`` will be used. ``name`` is useful to avoid name conflicts, as all dispatched algorithms live in a single namespace. graphs : str or dict or None, default "G" If a string, the parameter name of the graph, which must be the first argument of the wrapped function. If more than one graph is required for the algorithm (or if the graph is not the first argument), provide a dict of parameter name to argument position for each graph argument. For example, ``@_dispatch(graphs={"G": 0, "auxiliary?": 4})`` indicates the 0th parameter ``G`` of the function is a required graph, and the 4th parameter ``auxiliary`` is an optional graph. To indicate an argument is a list of graphs, do e.g. ``"[graphs]"``. Use ``graphs=None`` if *no* arguments are NetworkX graphs such as for graph generators, readers, and conversion functions. edge_attrs : str or dict, optional ``edge_attrs`` holds information about edge attribute arguments and default values for those edge attributes. If a string, ``edge_attrs`` holds the function argument name that indicates a single edge attribute to include in the converted graph. The default value for this attribute is 1. To indicate that an argument is a list of attributes (all with default value 1), use e.g. ``"[attrs]"``. If a dict, ``edge_attrs`` holds a dict keyed by argument names, with values that are either the default value or, if a string, the argument name that indicates the default value. node_attrs : str or dict, optional Like ``edge_attrs``, but for node attributes. preserve_edge_attrs : bool or str or dict, optional For bool, whether to preserve all edge attributes. For str, the parameter name that may indicate (with ``True`` or a callable argument) whether all edge attributes should be preserved when converting. For dict of ``{graph_name: {attr: default}}``, indicate pre-determined edge attributes (and defaults) to preserve for input graphs. preserve_node_attrs : bool or str or dict, optional Like ``preserve_edge_attrs``, but for node attributes. preserve_graph_attrs : bool or set For bool, whether to preserve all graph attributes. For set, which input graph arguments to preserve graph attributes. preserve_all_attrs : bool Whether to preserve all edge, node and graph attributes. This overrides all the other preserve_*_attrs. """ # Allow any of the following decorator forms: # - @_dispatch # - @_dispatch() # - @_dispatch(name="override_name") # - @_dispatch(graphs="graph") # - @_dispatch(edge_attrs="weight") # - @_dispatch(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"}) # These class attributes are currently used to allow backends to run networkx tests. # For example: `PYTHONPATH=. pytest --backend graphblas --fallback-to-nx` # Future work: add configuration to control these _is_testing = False _fallback_to_nx = ( os.environ.get("NETWORKX_FALLBACK_TO_NX", "true").strip().lower() == "true" ) _automatic_backends = [ x.strip() for x in os.environ.get("NETWORKX_AUTOMATIC_BACKENDS", "").split(",") if x.strip() ] def __new__( cls, func=None, *, name=None, graphs="G", edge_attrs=None, node_attrs=None, preserve_edge_attrs=False, preserve_node_attrs=False, preserve_graph_attrs=False, preserve_all_attrs=False, ): if func is None: return partial( _dispatch, name=name, graphs=graphs, edge_attrs=edge_attrs, node_attrs=node_attrs, preserve_edge_attrs=preserve_edge_attrs, preserve_node_attrs=preserve_node_attrs, preserve_graph_attrs=preserve_graph_attrs, preserve_all_attrs=preserve_all_attrs, ) if isinstance(func, str): raise TypeError("'name' and 'graphs' must be passed by keyword") from None # If name not provided, use the name of the function if name is None: name = func.__name__ self = object.__new__(cls) # standard function-wrapping stuff # __annotations__ not used self.__name__ = func.__name__ # self.__doc__ = func.__doc__ # __doc__ handled as cached property self.__defaults__ = func.__defaults__ # We "magically" add `backend=` keyword argument to allow backend to be specified if func.__kwdefaults__: self.__kwdefaults__ = {**func.__kwdefaults__, "backend": None} else: self.__kwdefaults__ = {"backend": None} self.__module__ = func.__module__ self.__qualname__ = func.__qualname__ self.__dict__.update(func.__dict__) self.__wrapped__ = func # Supplement docstring with backend info; compute and cache when needed self._orig_doc = func.__doc__ self._cached_doc = None self.orig_func = func self.name = name self.edge_attrs = edge_attrs self.node_attrs = node_attrs self.preserve_edge_attrs = preserve_edge_attrs or preserve_all_attrs self.preserve_node_attrs = preserve_node_attrs or preserve_all_attrs self.preserve_graph_attrs = preserve_graph_attrs or preserve_all_attrs if edge_attrs is not None and not isinstance(edge_attrs, (str, dict)): raise TypeError( f"Bad type for edge_attrs: {type(edge_attrs)}. Expected str or dict." ) from None if node_attrs is not None and not isinstance(node_attrs, (str, dict)): raise TypeError( f"Bad type for node_attrs: {type(node_attrs)}. Expected str or dict." ) from None if not isinstance(self.preserve_edge_attrs, (bool, str, dict)): raise TypeError( f"Bad type for preserve_edge_attrs: {type(self.preserve_edge_attrs)}." " Expected bool, str, or dict." ) from None if not isinstance(self.preserve_node_attrs, (bool, str, dict)): raise TypeError( f"Bad type for preserve_node_attrs: {type(self.preserve_node_attrs)}." " Expected bool, str, or dict." ) from None if not isinstance(self.preserve_graph_attrs, (bool, set)): raise TypeError( f"Bad type for preserve_graph_attrs: {type(self.preserve_graph_attrs)}." " Expected bool or set." ) from None if isinstance(graphs, str): graphs = {graphs: 0} elif graphs is None: pass elif not isinstance(graphs, dict): raise TypeError( f"Bad type for graphs: {type(graphs)}. Expected str or dict." ) from None elif len(graphs) == 0: raise KeyError("'graphs' must contain at least one variable name") from None # This dict comprehension is complicated for better performance; equivalent shown below. self.optional_graphs = set() self.list_graphs = set() if graphs is None: self.graphs = {} else: self.graphs = { self.optional_graphs.add(val := k[:-1]) or val if (last := k[-1]) == "?" else self.list_graphs.add(val := k[1:-1]) or val if last == "]" else k: v for k, v in graphs.items() } # The above is equivalent to: # self.optional_graphs = {k[:-1] for k in graphs if k[-1] == "?"} # self.list_graphs = {k[1:-1] for k in graphs if k[-1] == "]"} # self.graphs = {k[:-1] if k[-1] == "?" else k: v for k, v in graphs.items()} # Compute and cache the signature on-demand self._sig = None # Which backends implement this function? self.backends = { backend for backend, info in backend_info.items() if "functions" in info and name in info["functions"] } if name in _registered_algorithms: raise KeyError( f"Algorithm already exists in dispatch registry: {name}" ) from None _registered_algorithms[name] = self return self @property def __doc__(self): if (rv := self._cached_doc) is not None: return rv rv = self._cached_doc = self._make_doc() return rv @__doc__.setter def __doc__(self, val): self._orig_doc = val self._cached_doc = None @property def __signature__(self): if self._sig is None: sig = inspect.signature(self.orig_func) # `backend` is now a reserved argument used by dispatching. # assert "backend" not in sig.parameters if not any( p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values() ): sig = sig.replace( parameters=[ *sig.parameters.values(), inspect.Parameter( "backend", inspect.Parameter.KEYWORD_ONLY, default=None ), inspect.Parameter( "backend_kwargs", inspect.Parameter.VAR_KEYWORD ), ] ) else: *parameters, var_keyword = sig.parameters.values() sig = sig.replace( parameters=[ *parameters, inspect.Parameter( "backend", inspect.Parameter.KEYWORD_ONLY, default=None ), var_keyword, ] ) self._sig = sig return self._sig def __call__(self, /, *args, backend=None, **kwargs): if not backends: # Fast path if no backends are installed return self.orig_func(*args, **kwargs) # Use `backend_name` in this function instead of `backend` backend_name = backend if backend_name is not None and backend_name not in backends: raise ImportError(f"Unable to load backend: {backend_name}") graphs_resolved = {} for gname, pos in self.graphs.items(): if pos < len(args): if gname in kwargs: raise TypeError(f"{self.name}() got multiple values for {gname!r}") val = args[pos] elif gname in kwargs: val = kwargs[gname] elif gname not in self.optional_graphs: raise TypeError( f"{self.name}() missing required graph argument: {gname}" ) else: continue if val is None: if gname not in self.optional_graphs: raise TypeError( f"{self.name}() required graph argument {gname!r} is None; must be a graph" ) else: graphs_resolved[gname] = val # Alternative to the above that does not check duplicated args or missing required graphs. # graphs_resolved = { # val # for gname, pos in self.graphs.items() # if (val := args[pos] if pos < len(args) else kwargs.get(gname)) is not None # } if self._is_testing and self._automatic_backends and backend_name is None: # Special path if we are running networkx tests with a backend. return self._convert_and_call_for_tests( self._automatic_backends[0], args, kwargs, fallback_to_nx=self._fallback_to_nx, ) # Check if any graph comes from a backend if self.list_graphs: # Make sure we don't lose values by consuming an iterator args = list(args) for gname in self.list_graphs & graphs_resolved.keys(): val = list(graphs_resolved[gname]) graphs_resolved[gname] = val if gname in kwargs: kwargs[gname] = val else: args[self.graphs[gname]] = val has_backends = any( hasattr(g, "__networkx_backend__") or hasattr(g, "__networkx_plugin__") if gname not in self.list_graphs else any( hasattr(g2, "__networkx_backend__") or hasattr(g2, "__networkx_plugin__") for g2 in g ) for gname, g in graphs_resolved.items() ) if has_backends: graph_backend_names = { getattr( g, "__networkx_backend__", getattr(g, "__networkx_plugin__", "networkx"), ) for gname, g in graphs_resolved.items() if gname not in self.list_graphs } for gname in self.list_graphs & graphs_resolved.keys(): graph_backend_names.update( getattr( g, "__networkx_backend__", getattr(g, "__networkx_plugin__", "networkx"), ) for g in graphs_resolved[gname] ) else: has_backends = any( hasattr(g, "__networkx_backend__") or hasattr(g, "__networkx_plugin__") for g in graphs_resolved.values() ) if has_backends: graph_backend_names = { getattr( g, "__networkx_backend__", getattr(g, "__networkx_plugin__", "networkx"), ) for g in graphs_resolved.values() } if has_backends: # Dispatchable graphs found! Dispatch to backend function. # We don't handle calls with different backend graphs yet, # but we may be able to convert additional networkx graphs. backend_names = graph_backend_names - {"networkx"} if len(backend_names) != 1: # Future work: convert between backends and run if multiple backends found raise TypeError( f"{self.name}() graphs must all be from the same backend, found {backend_names}" ) [graph_backend_name] = backend_names if backend_name is not None and backend_name != graph_backend_name: # Future work: convert between backends to `backend_name` backend raise TypeError( f"{self.name}() is unable to convert graph from backend {graph_backend_name!r} " f"to the specified backend {backend_name!r}." ) if graph_backend_name not in backends: raise ImportError(f"Unable to load backend: {graph_backend_name}") if ( "networkx" in graph_backend_names and graph_backend_name not in self._automatic_backends ): # Not configured to convert networkx graphs to this backend raise TypeError( f"Unable to convert inputs and run {self.name}. " f"{self.name}() has networkx and {graph_backend_name} graphs, but NetworkX is not " f"configured to automatically convert graphs from networkx to {graph_backend_name}." ) backend = _load_backend(graph_backend_name) if hasattr(backend, self.name): if "networkx" in graph_backend_names: # We need to convert networkx graphs to backend graphs return self._convert_and_call( graph_backend_name, args, kwargs, fallback_to_nx=self._fallback_to_nx, ) # All graphs are backend graphs--no need to convert! return getattr(backend, self.name)(*args, **kwargs) # Future work: try to convert and run with other backends in self._automatic_backends raise NetworkXNotImplemented( f"'{self.name}' not implemented by {graph_backend_name}" ) # If backend was explicitly given by the user, so we need to use it no matter what if backend_name is not None: return self._convert_and_call( backend_name, args, kwargs, fallback_to_nx=False ) # Only networkx graphs; try to convert and run with a backend with automatic # conversion, but don't do this by default for graph generators or loaders. if self.graphs: for backend_name in self._automatic_backends: if self._can_backend_run(backend_name, *args, **kwargs): return self._convert_and_call( backend_name, args, kwargs, fallback_to_nx=self._fallback_to_nx, ) # Default: run with networkx on networkx inputs return self.orig_func(*args, **kwargs) def _can_backend_run(self, backend_name, /, *args, **kwargs): """Can the specified backend run this algorithms with these arguments?""" backend = _load_backend(backend_name) return hasattr(backend, self.name) and ( not hasattr(backend, "can_run") or backend.can_run(self.name, args, kwargs) ) def _convert_arguments(self, backend_name, args, kwargs): """Convert graph arguments to the specified backend. Returns ------- args tuple and kwargs dict """ bound = self.__signature__.bind(*args, **kwargs) bound.apply_defaults() if not self.graphs: bound_kwargs = bound.kwargs del bound_kwargs["backend"] return bound.args, bound_kwargs # Convert graphs into backend graph-like object # Include the edge and/or node labels if provided to the algorithm preserve_edge_attrs = self.preserve_edge_attrs edge_attrs = self.edge_attrs if preserve_edge_attrs is False: # e.g. `preserve_edge_attrs=False` pass elif preserve_edge_attrs is True: # e.g. `preserve_edge_attrs=True` edge_attrs = None elif isinstance(preserve_edge_attrs, str): if bound.arguments[preserve_edge_attrs] is True or callable( bound.arguments[preserve_edge_attrs] ): # e.g. `preserve_edge_attrs="attr"` and `func(attr=True)` # e.g. `preserve_edge_attrs="attr"` and `func(attr=myfunc)` preserve_edge_attrs = True edge_attrs = None elif bound.arguments[preserve_edge_attrs] is False and ( isinstance(edge_attrs, str) and edge_attrs == preserve_edge_attrs or isinstance(edge_attrs, dict) and preserve_edge_attrs in edge_attrs ): # e.g. `preserve_edge_attrs="attr"` and `func(attr=False)` # Treat `False` argument as meaning "preserve_edge_data=False" # and not `False` as the edge attribute to use. preserve_edge_attrs = False edge_attrs = None else: # e.g. `preserve_edge_attrs="attr"` and `func(attr="weight")` preserve_edge_attrs = False # Else: e.g. `preserve_edge_attrs={"G": {"weight": 1}}` if edge_attrs is None: # May have been set to None above b/c all attributes are preserved pass elif isinstance(edge_attrs, str): if edge_attrs[0] == "[": # e.g. `edge_attrs="[edge_attributes]"` (argument of list of attributes) # e.g. `func(edge_attributes=["foo", "bar"])` edge_attrs = { edge_attr: 1 for edge_attr in bound.arguments[edge_attrs[1:-1]] } elif callable(bound.arguments[edge_attrs]): # e.g. `edge_attrs="weight"` and `func(weight=myfunc)` preserve_edge_attrs = True edge_attrs = None elif bound.arguments[edge_attrs] is not None: # e.g. `edge_attrs="weight"` and `func(weight="foo")` (default of 1) edge_attrs = {bound.arguments[edge_attrs]: 1} elif self.name == "to_numpy_array" and hasattr( bound.arguments["dtype"], "names" ): # Custom handling: attributes may be obtained from `dtype` edge_attrs = { edge_attr: 1 for edge_attr in bound.arguments["dtype"].names } else: # e.g. `edge_attrs="weight"` and `func(weight=None)` edge_attrs = None else: # e.g. `edge_attrs={"attr": "default"}` and `func(attr="foo", default=7)` # e.g. `edge_attrs={"attr": 0}` and `func(attr="foo")` edge_attrs = { edge_attr: bound.arguments.get(val, 1) if isinstance(val, str) else val for key, val in edge_attrs.items() if (edge_attr := bound.arguments[key]) is not None } preserve_node_attrs = self.preserve_node_attrs node_attrs = self.node_attrs if preserve_node_attrs is False: # e.g. `preserve_node_attrs=False` pass elif preserve_node_attrs is True: # e.g. `preserve_node_attrs=True` node_attrs = None elif isinstance(preserve_node_attrs, str): if bound.arguments[preserve_node_attrs] is True or callable( bound.arguments[preserve_node_attrs] ): # e.g. `preserve_node_attrs="attr"` and `func(attr=True)` # e.g. `preserve_node_attrs="attr"` and `func(attr=myfunc)` preserve_node_attrs = True node_attrs = None elif bound.arguments[preserve_node_attrs] is False and ( isinstance(node_attrs, str) and node_attrs == preserve_node_attrs or isinstance(node_attrs, dict) and preserve_node_attrs in node_attrs ): # e.g. `preserve_node_attrs="attr"` and `func(attr=False)` # Treat `False` argument as meaning "preserve_node_data=False" # and not `False` as the node attribute to use. Is this used? preserve_node_attrs = False node_attrs = None else: # e.g. `preserve_node_attrs="attr"` and `func(attr="weight")` preserve_node_attrs = False # Else: e.g. `preserve_node_attrs={"G": {"pos": None}}` if node_attrs is None: # May have been set to None above b/c all attributes are preserved pass elif isinstance(node_attrs, str): if node_attrs[0] == "[": # e.g. `node_attrs="[node_attributes]"` (argument of list of attributes) # e.g. `func(node_attributes=["foo", "bar"])` node_attrs = { node_attr: None for node_attr in bound.arguments[node_attrs[1:-1]] } elif callable(bound.arguments[node_attrs]): # e.g. `node_attrs="weight"` and `func(weight=myfunc)` preserve_node_attrs = True node_attrs = None elif bound.arguments[node_attrs] is not None: # e.g. `node_attrs="weight"` and `func(weight="foo")` node_attrs = {bound.arguments[node_attrs]: None} else: # e.g. `node_attrs="weight"` and `func(weight=None)` node_attrs = None else: # e.g. `node_attrs={"attr": "default"}` and `func(attr="foo", default=7)` # e.g. `node_attrs={"attr": 0}` and `func(attr="foo")` node_attrs = { node_attr: bound.arguments.get(val) if isinstance(val, str) else val for key, val in node_attrs.items() if (node_attr := bound.arguments[key]) is not None } preserve_graph_attrs = self.preserve_graph_attrs # It should be safe to assume that we either have networkx graphs or backend graphs. # Future work: allow conversions between backends. backend = _load_backend(backend_name) for gname in self.graphs: if gname in self.list_graphs: bound.arguments[gname] = [ backend.convert_from_nx( g, edge_attrs=edge_attrs, node_attrs=node_attrs, preserve_edge_attrs=preserve_edge_attrs, preserve_node_attrs=preserve_node_attrs, preserve_graph_attrs=preserve_graph_attrs, name=self.name, graph_name=gname, ) if getattr( g, "__networkx_backend__", getattr(g, "__networkx_plugin__", "networkx"), ) == "networkx" else g for g in bound.arguments[gname] ] else: graph = bound.arguments[gname] if graph is None: if gname in self.optional_graphs: continue raise TypeError( f"Missing required graph argument `{gname}` in {self.name} function" ) if isinstance(preserve_edge_attrs, dict): preserve_edges = False edges = preserve_edge_attrs.get(gname, edge_attrs) else: preserve_edges = preserve_edge_attrs edges = edge_attrs if isinstance(preserve_node_attrs, dict): preserve_nodes = False nodes = preserve_node_attrs.get(gname, node_attrs) else: preserve_nodes = preserve_node_attrs nodes = node_attrs if isinstance(preserve_graph_attrs, set): preserve_graph = gname in preserve_graph_attrs else: preserve_graph = preserve_graph_attrs if ( getattr( graph, "__networkx_backend__", getattr(graph, "__networkx_plugin__", "networkx"), ) == "networkx" ): bound.arguments[gname] = backend.convert_from_nx( graph, edge_attrs=edges, node_attrs=nodes, preserve_edge_attrs=preserve_edges, preserve_node_attrs=preserve_nodes, preserve_graph_attrs=preserve_graph, name=self.name, graph_name=gname, ) bound_kwargs = bound.kwargs del bound_kwargs["backend"] return bound.args, bound_kwargs def _convert_and_call(self, backend_name, args, kwargs, *, fallback_to_nx=False): """Call this dispatchable function with a backend, converting graphs if necessary.""" backend = _load_backend(backend_name) if not self._can_backend_run(backend_name, *args, **kwargs): if fallback_to_nx: return self.orig_func(*args, **kwargs) msg = f"'{self.name}' not implemented by {backend_name}" if hasattr(backend, self.name): msg += " with the given arguments" raise RuntimeError(msg) try: converted_args, converted_kwargs = self._convert_arguments( backend_name, args, kwargs ) result = getattr(backend, self.name)(*converted_args, **converted_kwargs) except (NotImplementedError, NetworkXNotImplemented) as exc: if fallback_to_nx: return self.orig_func(*args, **kwargs) raise return result def _convert_and_call_for_tests( self, backend_name, args, kwargs, *, fallback_to_nx=False ): """Call this dispatchable function with a backend; for use with testing.""" backend = _load_backend(backend_name) if not self._can_backend_run(backend_name, *args, **kwargs): if fallback_to_nx or not self.graphs: return self.orig_func(*args, **kwargs) import pytest msg = f"'{self.name}' not implemented by {backend_name}" if hasattr(backend, self.name): msg += " with the given arguments" pytest.xfail(msg) try: converted_args, converted_kwargs = self._convert_arguments( backend_name, args, kwargs ) result = getattr(backend, self.name)(*converted_args, **converted_kwargs) except (NotImplementedError, NetworkXNotImplemented) as exc: if fallback_to_nx: return self.orig_func(*args, **kwargs) import pytest pytest.xfail( exc.args[0] if exc.args else f"{self.name} raised {type(exc).__name__}" ) if self.name in { "edmonds_karp_core", "barycenter", "contracted_nodes", "stochastic_graph", "relabel_nodes", }: # Special-case algorithms that mutate input graphs bound = self.__signature__.bind(*converted_args, **converted_kwargs) bound.apply_defaults() bound2 = self.__signature__.bind(*args, **kwargs) bound2.apply_defaults() if self.name == "edmonds_karp_core": R1 = backend.convert_to_nx(bound.arguments["R"]) R2 = bound2.arguments["R"] for k, v in R1.edges.items(): R2.edges[k]["flow"] = v["flow"] elif self.name == "barycenter" and bound.arguments["attr"] is not None: G1 = backend.convert_to_nx(bound.arguments["G"]) G2 = bound2.arguments["G"] attr = bound.arguments["attr"] for k, v in G1.nodes.items(): G2.nodes[k][attr] = v[attr] elif self.name == "contracted_nodes" and not bound.arguments["copy"]: # Edges and nodes changed; node "contraction" and edge "weight" attrs G1 = backend.convert_to_nx(bound.arguments["G"]) G2 = bound2.arguments["G"] G2.__dict__.update(G1.__dict__) elif self.name == "stochastic_graph" and not bound.arguments["copy"]: G1 = backend.convert_to_nx(bound.arguments["G"]) G2 = bound2.arguments["G"] for k, v in G1.edges.items(): G2.edges[k]["weight"] = v["weight"] elif self.name == "relabel_nodes" and not bound.arguments["copy"]: G1 = backend.convert_to_nx(bound.arguments["G"]) G2 = bound2.arguments["G"] if G1 is G2: return G2 G2._node.clear() G2._node.update(G1._node) G2._adj.clear() G2._adj.update(G1._adj) if hasattr(G1, "_pred") and hasattr(G2, "_pred"): G2._pred.clear() G2._pred.update(G1._pred) if hasattr(G1, "_succ") and hasattr(G2, "_succ"): G2._succ.clear() G2._succ.update(G1._succ) return G2 return backend.convert_to_nx(result, name=self.name) def _make_doc(self): if not self.backends: return self._orig_doc lines = [ "Backends", "--------", ] for backend in sorted(self.backends): info = backend_info[backend] if "short_summary" in info: lines.append(f"{backend} : {info['short_summary']}") else: lines.append(backend) if "functions" not in info or self.name not in info["functions"]: lines.append("") continue func_info = info["functions"][self.name] if "extra_docstring" in func_info: lines.extend( f" {line}" if line else line for line in func_info["extra_docstring"].split("\n") ) add_gap = True else: add_gap = False if "extra_parameters" in func_info: if add_gap: lines.append("") lines.append(" Extra parameters:") extra_parameters = func_info["extra_parameters"] for param in sorted(extra_parameters): lines.append(f" {param}") if desc := extra_parameters[param]: lines.append(f" {desc}") lines.append("") else: lines.append("") lines.pop() # Remove last empty line to_add = "\n ".join(lines) return f"{self._orig_doc.rstrip()}\n\n {to_add}" def __reduce__(self): """Allow this object to be serialized with pickle. This uses the global registry `_registered_algorithms` to deserialize. """ return _restore_dispatch, (self.name,) def _restore_dispatch(name): return _registered_algorithms[name] if os.environ.get("_NETWORKX_BUILDING_DOCS_"): # When building docs with Sphinx, use the original function with the # dispatched __doc__, b/c Sphinx renders normal Python functions better. # This doesn't show e.g. `*, backend=None, **backend_kwargs` in the # signatures, which is probably okay. It does allow the docstring to be # updated based on the installed backends. _orig_dispatch = _dispatch def _dispatch(func=None, **kwargs): # type: ignore[no-redef] if func is None: return partial(_dispatch, **kwargs) dispatched_func = _orig_dispatch(func, **kwargs) func.__doc__ = dispatched_func.__doc__ return func