MikkoLipsanen's picture
Update app.py
7926f67 verified
raw
history blame
5.25 kB
from optimum.onnxruntime import ORTModelForVision2Seq
from transformers import TrOCRProcessor
from huggingface_hub import login
import gradio as gr
import numpy as np
import onnxruntime
import torch
import time
import os
from plotting_functions import PlotHTR
from segment_image import SegmentImage
from onnx_text_recognition import TextRecognition
LINE_MODEL_PATH = "Kansallisarkisto/multicentury-textline-detection"
REGION_MODEL_PATH = "Kansallisarkisto/court-records-region-detection"
TROCR_PROCESSOR_PATH = "Kansallisarkisto/multicentury-htr-model-onnx"
TROCR_MODEL_PATH = "Kansallisarkisto/multicentury-htr-model-onnx"
login(token=os.getenv("HF_TOKEN"), add_to_git_credential=True)
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
def get_segmenter():
"""Initialize segmentation class."""
try:
segmenter = SegmentImage(line_model_path=LINE_MODEL_PATH,
device='0',
line_iou=0.3,
region_iou=0.5,
line_overlap=0.5,
line_nms_iou=0.7,
region_nms_iou=0.3,
line_conf_threshold=0.25,
region_conf_threshold=0.5,
region_model_path=REGION_MODEL_PATH,
order_regions=True,
region_half_precision=False,
line_half_precision=False)
return segmenter
except Exception as e:
print('Failed to initialize SegmentImage class: %s' % e)
def get_recognizer():
"""Initialize text recognition class."""
try:
recognizer = TextRecognition(
processor_path = TROCR_PROCESSOR_PATH,
model_path = TROCR_MODEL_PATH,
device = 'cuda:0',
half_precision = True,
line_threshold = 10
)
return recognizer
except Exception as e:
print('Failed to initialize TextRecognition class: %s' % e)
segmenter = get_segmenter()
recognizer = get_recognizer()
plotter = PlotHTR()
color_codes = """**Text region type:** <br>
Paragraph ![#EE1289](https://placehold.co/15x15/EE1289/EE1289.png)
Marginalia ![#00C957](https://placehold.co/15x15/00C957/00C957.png)
Page number ![#0000FF](https://placehold.co/15x15/0000FF/0000FF.png)"""
def merge_lines(segment_predictions):
img_lines = []
for region in segment_predictions:
img_lines += region['lines']
return img_lines
def get_text_predictions(image, segment_predictions, recognizer):
"""Collects text prediction data into dicts based on detected text regions."""
img_lines = merge_lines(segment_predictions)
height, width = segment_predictions[0]['img_shape']
# Process all lines of an image
texts = recognizer.process_lines(img_lines, image, height, width)
return texts
# Run demo code
with gr.Blocks(theme=gr.themes.Monochrome(), title="Multicentury HTR Demo") as demo:
gr.Markdown("# Multicentury HTR Demo")
with gr.Tab("Text content"):
with gr.Row():
input_img = gr.Image(label="Input image", type="pil")
textbox = gr.Textbox(label="Predicted text content", lines=10)
button = gr.Button("Process image")
processing_time = gr.Markdown()
with gr.Tab("Text regions"):
region_img = gr.Image(label="Predicted text regions", type="numpy")
gr.Markdown(color_codes)
with gr.Tab("Text lines"):
line_img = gr.Image(label="Predicted text lines", type="numpy")
gr.Markdown(color_codes)
def run_pipeline(image):
# Predict region and line segments
start = time.time()
segment_predictions = segmenter.get_segmentation(image)
print('segmentation ok')
if segment_predictions:
region_plot = plotter.plot_regions(segment_predictions, image)
line_plot = plotter.plot_lines(segment_predictions, image)
text_predictions = get_text_predictions(np.array(image), segment_predictions, recognizer)
print('text pred ok')
text = "\n".join(text_predictions)
end = time.time()
proc_time = end - start
proc_time_str = f"Processing time: {proc_time:.4f}s"
return {
region_img: region_plot,
line_img: line_plot,
textbox: text,
processing_time: proc_time_str
}
else:
end = time.time()
proc_time = end - start
proc_time_str = f"Processing time: {proc_time:.4f}s"
return {
region_img: None,
line_img: None,
textbox: None,
processing_time: proc_time_str
}
button.click(fn=run_pipeline,
inputs=input_img,
outputs=[region_img, line_img, textbox, processing_time])
if __name__ == "__main__":
demo.queue()
demo.launch(show_error=True)