File size: 6,283 Bytes
d2e141b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbdebc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import pandas as pd
import pickle

import os
MAIN_FOLDER = os.path.dirname(__file__)

# Define params names
PARAMS_NAME = [
    "orderAmount",
    "orderState",
    "paymentMethodRegistrationFailure",
    "paymentMethodType",
    "paymentMethodProvider",
    "paymentMethodIssuer",
    "transactionAmount",
    "transactionFailed",
    "emailDomain",
    "emailProvider",
    "customerIPAddressSimplified",
    "sameCity"
]

# Load model
with open("model/modelo_proyecto_final.pkl", "rb") as f:
    model = pickle.load(f)

# Columnas
COLUMNS_PATH = "model/categories_ohe_without_fraudulent.pickle"
with open(COLUMNS_PATH, 'rb') as handle:
    ohe_tr = pickle.load(handle)

BINS_ORDER = os.path.join(MAIN_FOLDER, "model/saved_bins_order.pickle")
with open(BINS_ORDER, 'rb') as handle:
    new_saved_bins_order = pickle.load(handle)

BINS_TRANSACTION = os.path.join(MAIN_FOLDER, "model/saved_bins_transaction.pickle")
with open(BINS_TRANSACTION, 'rb') as handle:
    new_saved_bins_transaction = pickle.load(handle)

def predict(*args):
    answer_dict = {}

    for i in range(len(PARAMS_NAME)):
        answer_dict[PARAMS_NAME[i]] = [args[i]]

    # Crear dataframe
    single_instance = pd.DataFrame.from_dict(answer_dict)

    # Manejar puntos de corte o bins
    single_instance["orderAmount"] = single_instance["orderAmount"].astype(float)
    single_instance["orderAmount"] = pd.cut(single_instance['orderAmount'],
                                 bins=new_saved_bins_order, 
                                 include_lowest=True)

    single_instance["transactionAmount"] = single_instance["transactionAmount"].astype(int)
    single_instance["transactionAmount"] = pd.cut(single_instance['transactionAmount'],
                                 bins=new_saved_bins_order, 
                                 include_lowest=True)

    # One hot encoding
    single_instance_ohe = pd.get_dummies(single_instance).reindex(columns = ohe_tr).fillna(0)

    prediction = model.predict(single_instance_ohe)

    # Cast numpy.int64 to just a int
    type_of_fraud = int(prediction[0])

    # Adaptaci贸n respuesta
    response = "Error parsing value"
    if type_of_fraud == 0:
        response = "False"
    if type_of_fraud == 1:
        response = "True"
    if type_of_fraud == 2:
        response = "Warning"

    return response


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Prevenci贸n de Fraude 馃攳 馃攳 
        """
    )

    with gr.Row():
        with gr.Column():

            gr.Markdown(
                """
                ## Predecir si un cliente es fraudulento o no.
                """
            )
            
            orderAmount = gr.Slider(label="Order amount", minimum=0, maximum=355, step=2, randomize=True)

            orderState = gr.Radio(
                label="Order state",
                choices=["fulfilled", "failed", "pending"],
                value="failed"
                )

            paymentMethodRegistrationFailure = gr.Radio(
                label="Payment method registration failure",
                choices=["False", "True"],
                value="True"
                )

            paymentMethodType = gr.Radio(
                label="Payment method type",
                choices=["card", "apple pay ", "paypal", "bitcoin"],
                value="bitcoin"
                )

            paymentMethodProvider = gr.Dropdown(
                label="Payment method provider",
                choices=["JCB 16 digit", "VISA 16 digit", "Voyager", "Diners Club / Carte Blanche", "Maestro", "VISA 13 digit", "Discover", "American Express", "JCB 15 digit", "Mastercard"],
                multiselect=False,
                value="American Express"
                )
            
            paymentMethodIssuer = gr.Dropdown(
                label="Payment method issuer",
                choices=["Her Majesty Trust", "Vertex Bancorp", "Fountain Financial Inc.", "His Majesty Bank Corp.", "Bastion Banks", "Bulwark Trust Corp.", "weird", "Citizens First Banks", "Grand Credit Corporation", "Solace Banks", "Rose Bancshares"],
                multiselect=False,
                value="Bastion Banks"
                )
            
            transactionAmount = gr.Slider(label="Transaction amount", minimum=0, maximum=355, step=2, randomize=True)

            transactionFailed = gr.Radio(
                label="Transaction failed",
                choices=["False", "True"],
                value="False"
                )

            emailDomain = gr.Radio(
                label="Email domain",
                choices=["com", "biz", "org", "net", "info", "weird"],
                value="com"
                )

            emailProvider = gr.Radio(
                label="Email provider",
                choices=["gmail", "hotmail", "yahoo", "other", "weird"],
                value="gmail"
                )

            customerIPAddressSimplified = gr.Radio(
                label="Customer IP Address",
                choices=["only_letters", "digits_and_letters"],
                value="only_letter"
                )

            sameCity = gr.Radio(
                label="Same city",
                choices=["unknown", "no", "yes"],
                value="unknown"
                )

        with gr.Column():

            gr.Markdown(
                """
                ## Predicci贸n
                """
            )

            label = gr.Label(label="Score")
            predict_btn = gr.Button(value="Evaluar")
            predict_btn.click(
            predict,
            inputs=[
                orderAmount,
                orderState,
                paymentMethodRegistrationFailure,
                paymentMethodType,
                paymentMethodProvider,
                paymentMethodIssuer,
                transactionAmount,
                transactionFailed,
                emailDomain,
                emailProvider,
                customerIPAddressSimplified,
                sameCity,
            ],
            outputs=[label],
            api_name="prediccion"
            )
    gr.Markdown(
        """
        <p style='text-align: center'>
            <a >Proyecto Final Kari 
            </a>
        </p>
        """
    )

demo.launch()