Spaces:
Runtime error
Runtime error
File size: 6,283 Bytes
d2e141b dbdebc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
import pandas as pd
import pickle
import os
MAIN_FOLDER = os.path.dirname(__file__)
# Define params names
PARAMS_NAME = [
"orderAmount",
"orderState",
"paymentMethodRegistrationFailure",
"paymentMethodType",
"paymentMethodProvider",
"paymentMethodIssuer",
"transactionAmount",
"transactionFailed",
"emailDomain",
"emailProvider",
"customerIPAddressSimplified",
"sameCity"
]
# Load model
with open("model/modelo_proyecto_final.pkl", "rb") as f:
model = pickle.load(f)
# Columnas
COLUMNS_PATH = "model/categories_ohe_without_fraudulent.pickle"
with open(COLUMNS_PATH, 'rb') as handle:
ohe_tr = pickle.load(handle)
BINS_ORDER = os.path.join(MAIN_FOLDER, "model/saved_bins_order.pickle")
with open(BINS_ORDER, 'rb') as handle:
new_saved_bins_order = pickle.load(handle)
BINS_TRANSACTION = os.path.join(MAIN_FOLDER, "model/saved_bins_transaction.pickle")
with open(BINS_TRANSACTION, 'rb') as handle:
new_saved_bins_transaction = pickle.load(handle)
def predict(*args):
answer_dict = {}
for i in range(len(PARAMS_NAME)):
answer_dict[PARAMS_NAME[i]] = [args[i]]
# Crear dataframe
single_instance = pd.DataFrame.from_dict(answer_dict)
# Manejar puntos de corte o bins
single_instance["orderAmount"] = single_instance["orderAmount"].astype(float)
single_instance["orderAmount"] = pd.cut(single_instance['orderAmount'],
bins=new_saved_bins_order,
include_lowest=True)
single_instance["transactionAmount"] = single_instance["transactionAmount"].astype(int)
single_instance["transactionAmount"] = pd.cut(single_instance['transactionAmount'],
bins=new_saved_bins_order,
include_lowest=True)
# One hot encoding
single_instance_ohe = pd.get_dummies(single_instance).reindex(columns = ohe_tr).fillna(0)
prediction = model.predict(single_instance_ohe)
# Cast numpy.int64 to just a int
type_of_fraud = int(prediction[0])
# Adaptaci贸n respuesta
response = "Error parsing value"
if type_of_fraud == 0:
response = "False"
if type_of_fraud == 1:
response = "True"
if type_of_fraud == 2:
response = "Warning"
return response
with gr.Blocks() as demo:
gr.Markdown(
"""
# Prevenci贸n de Fraude 馃攳 馃攳
"""
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Predecir si un cliente es fraudulento o no.
"""
)
orderAmount = gr.Slider(label="Order amount", minimum=0, maximum=355, step=2, randomize=True)
orderState = gr.Radio(
label="Order state",
choices=["fulfilled", "failed", "pending"],
value="failed"
)
paymentMethodRegistrationFailure = gr.Radio(
label="Payment method registration failure",
choices=["False", "True"],
value="True"
)
paymentMethodType = gr.Radio(
label="Payment method type",
choices=["card", "apple pay ", "paypal", "bitcoin"],
value="bitcoin"
)
paymentMethodProvider = gr.Dropdown(
label="Payment method provider",
choices=["JCB 16 digit", "VISA 16 digit", "Voyager", "Diners Club / Carte Blanche", "Maestro", "VISA 13 digit", "Discover", "American Express", "JCB 15 digit", "Mastercard"],
multiselect=False,
value="American Express"
)
paymentMethodIssuer = gr.Dropdown(
label="Payment method issuer",
choices=["Her Majesty Trust", "Vertex Bancorp", "Fountain Financial Inc.", "His Majesty Bank Corp.", "Bastion Banks", "Bulwark Trust Corp.", "weird", "Citizens First Banks", "Grand Credit Corporation", "Solace Banks", "Rose Bancshares"],
multiselect=False,
value="Bastion Banks"
)
transactionAmount = gr.Slider(label="Transaction amount", minimum=0, maximum=355, step=2, randomize=True)
transactionFailed = gr.Radio(
label="Transaction failed",
choices=["False", "True"],
value="False"
)
emailDomain = gr.Radio(
label="Email domain",
choices=["com", "biz", "org", "net", "info", "weird"],
value="com"
)
emailProvider = gr.Radio(
label="Email provider",
choices=["gmail", "hotmail", "yahoo", "other", "weird"],
value="gmail"
)
customerIPAddressSimplified = gr.Radio(
label="Customer IP Address",
choices=["only_letters", "digits_and_letters"],
value="only_letter"
)
sameCity = gr.Radio(
label="Same city",
choices=["unknown", "no", "yes"],
value="unknown"
)
with gr.Column():
gr.Markdown(
"""
## Predicci贸n
"""
)
label = gr.Label(label="Score")
predict_btn = gr.Button(value="Evaluar")
predict_btn.click(
predict,
inputs=[
orderAmount,
orderState,
paymentMethodRegistrationFailure,
paymentMethodType,
paymentMethodProvider,
paymentMethodIssuer,
transactionAmount,
transactionFailed,
emailDomain,
emailProvider,
customerIPAddressSimplified,
sameCity,
],
outputs=[label],
api_name="prediccion"
)
gr.Markdown(
"""
<p style='text-align: center'>
<a >Proyecto Final Kari
</a>
</p>
"""
)
demo.launch()
|