File size: 2,734 Bytes
66b0cef 9b4118a 66b0cef e7bf233 3603393 e7bf233 3603393 9b4118a 3603393 e7bf233 3603393 e7bf233 3603393 e7bf233 3603393 e7bf233 3603393 e7bf233 3603393 147944d 3603393 bce0716 434846f 23846ab 9b4118a 09fb843 70151d9 9b4118a f7420b8 94f65a5 fd2ee2d 434846f 8a42a65 874c1d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import gradio as gr
import random
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from dotenv import load_dotenv
# Load the translation model
translation_model = AutoModelForSeq2SeqLM.from_pretrained("KarmaCST/nllb-200-distilled-600M-dz-to-en")
tokenizer = AutoTokenizer.from_pretrained("KarmaCST/nllb-200-distilled-600M-dz-to-en")
src_lang="dzo_Tibt"
tgt_lang="eng_Latn"
# def translate_dzongkha_to_english(text):
# translation_pipeline = pipeline("translation",
# model=translation_model,
# tokenizer=tokenizer,
# src_lang=src_lang,
# tgt_lang=tgt_lang)
# translated_text = translation_pipeline(text)[0]['translation_text']
# return translated_text
model = gr.load("models/Purz/face-projection")
def generate_image(text, seed):
translation_pipeline = pipeline("translation",
model=translation_model,
tokenizer=tokenizer,
src_lang=src_lang,
tgt_lang=tgt_lang)
text = translation_pipeline(text)[0]['translation_text']
if seed is not None:
random.seed(seed)
if text in [example[0] for example in examples]:
print(f"Using example: {text}")
return model(text)
examples=[
["བྱི་ཅུང་ཚུ་གངས་རི་གི་ཐོག་ཁར་འཕུར།", None],
["པཱ་རོ་ཁྲོམ་གྱི་ཐོག་ཁར་གནམ་གྲུ་འཕུར།",None],
["པཱ་རོ་ཁྲོམ་གྱི་ཐོག་ཁར་ ཤིང་ཚུ་གི་བར་ན་ གནམ་གྲུ་འཕུར་བའི་འཐོང་གནང་།",None],
["སློབ་ཕྲུག་ཚུ་ ཆརཔ་ནང་རྐང་རྩེད་རྩེ་དེས།"]
]
# examples = [
# ["Humanoid Cat Warrior, Full View", None],
# ["Warhammer Sisterhood", None],
# ["Future Robots war", None],
# ["Fantasy dragon", None]
# ]
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."),
gr.Slider(minimum=0, maximum=10000, step=1, label="Seed (optional)")
],
outputs=gr.Image(label="Generated Image"),
examples=examples,
theme="NoCrypt/miku",
description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.",
)
interface.launch() |