|
import gradio as gr |
|
import random |
|
|
|
import requests |
|
from PIL import Image |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
|
|
|
|
|
|
|
|
translation_model = AutoModelForSeq2SeqLM.from_pretrained("KarmaCST/nllb-200-distilled-600M-dz-to-en") |
|
tokenizer = AutoTokenizer.from_pretrained("KarmaCST/nllb-200-distilled-600M-dz-to-en") |
|
|
|
|
|
src_lang="dzo_Tibt" |
|
tgt_lang="eng_Latn" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = gr.load("models/Purz/face-projection") |
|
|
|
def generate_image(text, seed): |
|
translation_pipeline = pipeline("translation", |
|
model=translation_model, |
|
tokenizer=tokenizer, |
|
src_lang=src_lang, |
|
tgt_lang=tgt_lang) |
|
|
|
text = translation_pipeline(text)[0]['translation_text'] |
|
|
|
if seed is not None: |
|
random.seed(seed) |
|
|
|
if text in [example[0] for example in examples]: |
|
print(f"Using example: {text}") |
|
|
|
return model(text) |
|
examples=[ |
|
["བྱི་ཅུང་ཚུ་གངས་རི་གི་ཐོག་ཁར་འཕུར།", None], |
|
["པཱ་རོ་ཁྲོམ་གྱི་ཐོག་ཁར་གནམ་གྲུ་འཕུར།",None], |
|
["པཱ་རོ་ཁྲོམ་གྱི་ཐོག་ཁར་ ཤིང་ཚུ་གི་བར་ན་ གནམ་གྲུ་འཕུར་བའི་འཐོང་གནང་།",None], |
|
["སློབ་ཕྲུག་ཚུ་ ཆརཔ་ནང་རྐང་རྩེད་རྩེ་དེས།",None] |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_image, |
|
inputs=[ |
|
gr.Textbox(label="Type here your imagination:", placeholder="Dzongkha text..."), |
|
gr.Slider(minimum=0, maximum=10000, step=1, label="Seed (optional)") |
|
], |
|
outputs=gr.Image(label="Generated Image"), |
|
title="Dzongkha Text to Image Generation", |
|
examples=examples, |
|
theme="NoCrypt/miku", |
|
article="<h1>Created By:</h1>Mr. Karma Wangchuk<br>Lecturer<br>Information Technology Department<br>College of Science and Technology<br>Rinchending Phuentsholing<br>Chhukha Bhutan<br>", |
|
description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.", |
|
) |
|
|
|
interface.launch() |