import gradio as gr import random import requests from PIL import Image from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline # from dotenv import load_dotenv # Load the translation model translation_model = AutoModelForSeq2SeqLM.from_pretrained("KarmaCST/nllb-200-distilled-600M-dz-to-en") tokenizer = AutoTokenizer.from_pretrained("KarmaCST/nllb-200-distilled-600M-dz-to-en") model = gr.load("models/Purz/face-projection") src_lang="dzo_Tibt" tgt_lang="eng_Latn" def translate_dzongkha_to_english(text): translation_pipeline = pipeline("translation", model=translation_model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang) translated_text = translation_pipeline(text)[0]['translation_text'] def generate_image(translated_text, seed): if seed is not None: random.seed(seed) if text in [example[0] for example in examples]: print(f"Using example: {text}") return model(text) # return model(text) # model = gr.load("models/Purz/face-projection") # def generate_image(text, seed): # if seed is not None: # random.seed(seed) # if text in [example[0] for example in examples]: # print(f"Using example: {text}") # return model(text) examples = [ ["Humanoid Cat Warrior, Full View", None], ["Warhammer Sisterhood", None], ["Future Robots war", None], ["Fantasy dragon", None] ] interface = gr.Interface( fn=translate_dzongkha_to_english, inputs=[ gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."), gr.Slider(minimum=0, maximum=10000, step=1, label="Seed (optional)") ], outputs=gr.Image(label="Generated Image"), examples=examples, theme="NoCrypt/miku", description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.", ) interface.launch()