File size: 16,856 Bytes
993f0db
 
 
 
 
 
e6a9b5c
fecac47
427cb0b
 
 
 
fecac47
427cb0b
 
 
 
993f0db
 
427cb0b
 
 
 
 
 
 
 
 
993f0db
 
 
427cb0b
 
e6a9b5c
993f0db
427cb0b
e6a9b5c
 
427cb0b
 
 
 
 
 
 
 
e6a9b5c
427cb0b
 
 
 
 
 
 
 
993f0db
 
427cb0b
 
 
 
 
 
 
 
 
 
993f0db
 
427cb0b
993f0db
 
c023426
993f0db
 
427cb0b
 
e6a9b5c
427cb0b
993f0db
 
427cb0b
e6a9b5c
 
993f0db
 
 
 
 
e6a9b5c
993f0db
 
427cb0b
fecac47
 
 
 
 
 
 
 
 
 
427cb0b
 
fecac47
 
427cb0b
 
 
fecac47
427cb0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c023426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427cb0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c023426
427cb0b
 
 
 
 
 
 
 
 
 
 
 
fecac47
c023426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993f0db
 
427cb0b
 
 
 
 
993f0db
 
427cb0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import streamlit as st
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torch
import numpy as np
import soundfile as sf
import io
import librosa
import matplotlib.pyplot as plt
import librosa.display
import zipfile
import os
from datetime import datetime

# For recording
from st_audiorec import st_audiorec
import base64
from pydub import AudioSegment

st.title("Syllables per Second Calculator")
st.write(
    "Upload an audio file *or* record from your microphone to calculate "
    "the number of 'p', 't', and 'k' syllables per second."
)

def get_syllables_per_second(audio_bytes):
    """
    Processes an audio file-like object (or BytesIO) and returns syllables/sec.
    """
    processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
    model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")

    # Read the audio data
    audio_input, original_sample_rate = sf.read(io.BytesIO(audio_bytes))
    target_sample_rate = processor.feature_extractor.sampling_rate

    # Resample if needed
    if original_sample_rate != target_sample_rate:
        if audio_input.ndim > 1:
            audio_input = np.asarray([
                librosa.resample(
                    channel,
                    orig_sr=original_sample_rate,
                    target_sr=target_sample_rate
                ) 
                for channel in audio_input.T
            ]).T
        else:
            audio_input = librosa.resample(
                audio_input,
                orig_sr=original_sample_rate,
                target_sr=target_sample_rate
            )

    # Convert to mono if stereo
    if audio_input.ndim > 1:
        audio_input = np.mean(audio_input, axis=1)

    # Create mel spectrogram
    mel_spec = librosa.feature.melspectrogram(
        y=audio_input,
        sr=target_sample_rate,
        n_mels=128,
        fmax=8000
    )
    mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)

    # Prepare input for the model
    input_values = processor(audio_input, return_tensors="pt").input_values

    # Perform inference
    with torch.no_grad():
        logits = model(input_values).logits
        probabilities = torch.softmax(logits, dim=-1)
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids, output_char_offsets=True)
        offsets = transcription["char_offsets"]
        print("Offsets are:", offsets)

    # We only care about 'p', 't', or 'k'
    syllable_offsets = [item for item in offsets[0] if item['char'] in ['p', 't', 'k']]
    
    if syllable_offsets:
        first_syllable_offset = syllable_offsets[0]['start_offset'] * 0.02
        last_syllable_offset = syllable_offsets[-1]['end_offset'] * 0.02
        syllable_duration = last_syllable_offset - first_syllable_offset
    else:
        syllable_duration = 0

    syllable_count = len(syllable_offsets)
    audio_duration = len(audio_input) / target_sample_rate
    syllables_per_second = syllable_count / syllable_duration if syllable_duration > 0 else 0

    # Plot syllables per second over time
    times = []
    syllables_per_second_time = []
    for i in range(len(syllable_offsets) - 1):
        start = syllable_offsets[i]['start_offset'] * 0.02
        end = syllable_offsets[i + 1]['end_offset'] * 0.02
        duration = end - start
        rate = 1 / duration if duration > 0 else 0
        times.append(start)
        syllables_per_second_time.append(rate)

    plt.figure(figsize=(8, 3))
    plt.plot(times, syllables_per_second_time, marker='o')
    plt.xlabel('Time (s)')
    plt.ylabel('Syllables per second')
    plt.title('Syllables/Second Over Time')
    plt.grid(True)
    plt.tight_layout()
    plt.savefig('syllables_per_second.png')
    plt.close()

    # Create a new figure for the mel spectrogram
    plt.figure(figsize=(12, 6))
    librosa.display.specshow(
        mel_spec_db,
        sr=target_sample_rate,
        x_axis='time',
        y_axis='mel',
        fmax=8000
    )
    
    # Highlight p, t, k sounds
    for offset in syllable_offsets:
        start_time = offset['start_offset'] * 0.02
        end_time = offset['end_offset'] * 0.02
        mid_time = (start_time + end_time) / 2
        plt.axvline(x=start_time, color='r', alpha=0.3, linestyle='--')
        plt.text(mid_time, mel_spec_db.shape[0] * 0.9, 
                offset['char'].upper(),
                horizontalalignment='center',
                color='white',
                bbox=dict(facecolor='red', alpha=0.7))

    plt.colorbar(format='%+2.0f dB')
    plt.title('Mel Spectrogram with Highlighted Syllables')
    plt.tight_layout()
    plt.savefig('mel_spectrogram.png')
    plt.close()

    # Calculate evenness and distinctness metrics
    syllable_stats = {}
    for syllable in ['p', 't', 'k']:
        syllable_times = [offset for offset in syllable_offsets if offset['char'] == syllable]
        
        if len(syllable_times) > 1:
            intervals = [(syllable_times[i+1]['start_offset'] - syllable_times[i]['start_offset']) * 0.02 
                        for i in range(len(syllable_times)-1)]
            
            mean_interval = np.mean(intervals)
            std_interval = np.std(intervals)
            cv = (std_interval / mean_interval) if mean_interval > 0 else 0
            
            # Debug prints for confidence calculation
            syllable_idx = processor.tokenizer.convert_tokens_to_ids(syllable)
            print(f"\nProcessing syllable: {syllable} (token_id: {syllable_idx})")
            confidence_scores = []
            
            # Only look at time windows where this syllable occurs
            for offset in syllable_times:
                # Convert time offset to model timestep index
                time_idx = int(offset['start_offset'])
                prob = probabilities[0][time_idx]
                
                # Get top 5 predictions and their indices
                top_k_values, top_k_indices = torch.topk(prob, k=5)
                
                print(f"\nTimestep {time_idx} (time: {time_idx * 0.02:.3f}s):")
                print(f"Top-5 indices: {top_k_indices.tolist()}")
                print(f"Top-5 values: {top_k_values.tolist()}")
                
                if syllable_idx in top_k_indices:
                    syllable_prob = prob[syllable_idx]
                    relative_confidence = syllable_prob / top_k_values.sum()
                    print(f"Syllable probability: {syllable_prob:.4f}")
                    print(f"Relative confidence: {relative_confidence:.4f}")
                    confidence_scores.append(float(relative_confidence))
                else:
                    confidence_scores.append(0.0)
                    print("Syllable not in top-5")
            
            # Calculate mean confidence only from timesteps where syllable occurs
            mean_confidence = np.mean(confidence_scores) if confidence_scores else 0.0
            print(f"\nFinal confidence scores for {syllable}:")
            print(f"Scores at syllable timestamps: {confidence_scores}")
            print(f"Mean confidence: {mean_confidence:.4f}")
            
            syllable_stats[syllable] = {
                'count': len(syllable_times),
                'mean_interval': mean_interval,
                'std_interval': std_interval,
                'cv': cv,
                'mean_confidence': mean_confidence,
                'intervals': intervals,
                'confidence_scores': confidence_scores
            }

    # Create visualization for evenness and distinctness
    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10))
    
    # Color scheme
    colors = {
        'p': '#2E86C1',  # Blue
        't': '#28B463',  # Green
        'k': '#E74C3C'   # Red
    }
    
    # Plot 1: Evenness Analysis
    for syllable, stats in syllable_stats.items():
        if len(stats['intervals']) > 0:
            # Calculate normalized intervals (deviation from mean)
            mean_interval = stats['mean_interval']
            normalized_intervals = [(interval - mean_interval) / mean_interval * 100 
                                 for interval in stats['intervals']]
            
            # Plot normalized intervals
            x = range(len(normalized_intervals))
            ax1.plot(x, normalized_intervals, 'o-', 
                    label=f'{syllable} (CV={stats["cv"]:.2f})',
                    color=colors[syllable], linewidth=2, markersize=8)
            
            # Add individual point annotations
            for i, val in enumerate(normalized_intervals):
                ax1.annotate(f'{val:.1f}%', 
                           (i, val),
                           xytext=(0, 10), 
                           textcoords='offset points',
                           ha='center',
                           fontsize=8)
    
    # Add reference zones for evenness
    ax1.axhspan(-10, 10, color='#2ECC71', alpha=0.2, label='Highly Regular (±10%)')
    ax1.axhspan(-30, -10, color='#F1C40F', alpha=0.2, label='Moderately Regular')
    ax1.axhspan(10, 30, color='#F1C40F', alpha=0.2)
    ax1.axhspan(-50, -30, color='#E74C3C', alpha=0.2, label='Irregular')
    ax1.axhspan(30, 50, color='#E74C3C', alpha=0.2)
    
    ax1.set_xlabel('Repetition Number', fontsize=12)
    ax1.set_ylabel('Deviation from Mean Interval (%)', fontsize=12)
    ax1.set_title('Timing Evenness Analysis\n(Deviation from Mean Interval)', fontsize=14, pad=20)
    ax1.grid(True, linestyle='--', alpha=0.7)
    ax1.legend(loc='upper right', bbox_to_anchor=(1.15, 1))
    ax1.set_ylim(-50, 50)

    # Plot 2: Distinctness Analysis
    for syllable, stats in syllable_stats.items():
        if len(stats['confidence_scores']) > 0:
            x = range(len(stats['confidence_scores']))
            
            # Create gradient colors based on confidence scores
            colors_array = []
            for score in stats['confidence_scores']:
                if score > 0.7:
                    colors_array.append('#2ECC71')  # Green for high confidence
                elif score > 0.4:
                    colors_array.append('#F1C40F')  # Yellow for medium confidence
                else:
                    colors_array.append('#E74C3C')  # Red for low confidence
            
            # Plot bars with gradient colors
            bars = ax2.bar(x, stats['confidence_scores'], 
                         label=f'{syllable} (mean={stats["mean_confidence"]:.2f})',
                         color=colors_array, alpha=0.7)
            
            # Add value labels on top of bars
            for bar in bars:
                height = bar.get_height()
                ax2.text(bar.get_x() + bar.get_width()/2., height,
                        f'{height:.2f}',
                        ha='center', va='bottom', fontsize=8)
    
    # Add reference lines for distinctness
    ax2.axhline(y=0.7, color='#2ECC71', linestyle='--', alpha=0.5, label='High Distinctness')
    ax2.axhline(y=0.4, color='#F1C40F', linestyle='--', alpha=0.5, label='Moderate Distinctness')
    
    ax2.set_xlabel('Syllable Occurrence', fontsize=12)
    ax2.set_ylabel('Articulation Distinctness Score', fontsize=12)
    ax2.set_title('Articulation Distinctness Analysis\n(Higher Score = Clearer Articulation)', fontsize=14, pad=20)
    ax2.grid(True, linestyle='--', alpha=0.7)
    ax2.legend(loc='upper right', bbox_to_anchor=(1.15, 1))
    ax2.set_ylim(0, 1)

    # Overall layout adjustments
    plt.tight_layout()
    plt.subplots_adjust(right=0.85)  # Make room for legends
    plt.savefig('articulation_analysis.png', dpi=300, bbox_inches='tight')
    plt.close()

    # Update results text with new metrics
    results_text = f"""Syllables per Second Analysis
Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

SPEED MEASUREMENTS
----------------
- Overall syllables per second: {syllables_per_second:.2f}
- Total number of syllables: {syllable_count}
- Total duration: {audio_duration:.2f} seconds

Detailed Analysis by Syllable:"""

    for syllable, stats in syllable_stats.items():
        results_text += f"""

{syllable.upper()} Syllable Analysis:
Count: {stats['count']} occurrences

EVENNESS MEASUREMENTS (timing regularity)
--------------------------------
- Mean interval between repetitions: {stats['mean_interval']:.3f} seconds
- Variation in intervals (std dev): {stats['std_interval']:.3f} seconds
- Coefficient of variation: {stats['cv']:.3f}
  (Lower CV = more even timing, Higher CV = more irregular timing)
  * CV < 0.1: Highly regular
  * CV 0.1-0.3: Moderately regular
  * CV > 0.3: Irregular

DISTINCTNESS MEASUREMENTS (articulation clarity)
------------------------------------
- Mean articulation confidence: {stats['mean_confidence']:.3f}
  (Higher values indicate clearer articulation)
  * Values closer to 1.0 indicate very distinct pronunciation
  * Values closer to 0.0 indicate less distinct pronunciation
- Confidence scores for each occurrence: {stats['confidence_scores']}

RAW MEASUREMENTS
--------------
- All intervals between repetitions (seconds): {stats['intervals']}"""

    # Print the results text to verify
    print("\nFinal Results Text:")
    print(results_text)

    # Create results directory if it doesn't exist
    os.makedirs('results', exist_ok=True)
    
    # Save the audio file
    audio_path = 'results/recorded_audio.wav'
    with open(audio_path, 'wb') as f:
        f.write(audio_bytes)
    
    # Save syllables per second to text file
    with open('results/analysis_results.txt', 'w') as f:
        f.write(results_text)
    
    # Create zip file
    zip_path = 'results/analysis_package.zip'
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        zipf.write('syllables_per_second.png')
        zipf.write('mel_spectrogram.png')
        zipf.write('articulation_analysis.png')
        zipf.write(audio_path)
        zipf.write('results/analysis_results.txt')
    
    # Add download button after the visualizations
    with open(zip_path, 'rb') as f:
        st.download_button(
            label="Download Analysis Package",
            data=f,
            file_name="ddk_analysis_package.zip",
            mime="application/zip",
            help="Download a zip file containing the audio, visualizations, and analysis results"
        )

    # Display all visualizations
    col1, col2 = st.columns(2)
    with col1:
        st.image('syllables_per_second.png')
        st.image('articulation_analysis.png')
    with col2:
        st.image('mel_spectrogram.png')

    # Display detailed metrics
    st.write("### Detailed Analysis")
    for syllable, stats in syllable_stats.items():
        st.write(f"\n**{syllable.upper()} Syllable:**")
        st.write(f"- Count: {stats['count']}")
        st.write(f"- Mean interval: {stats['mean_interval']:.3f} seconds")
        st.write(f"- Coefficient of variation: {stats['cv']:.3f}")
        st.write(f"- Mean articulation confidence: {stats['mean_confidence']:.3f}")

    return syllables_per_second


# -----------------------------
# SECTION: File Uploader
# -----------------------------
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"])

if uploaded_file is not None:
    with st.spinner("Processing the uploaded audio file..."):
        # Read entire file into bytes
        audio_bytes = uploaded_file.read()
        result = get_syllables_per_second(audio_bytes)
        st.write(f"**Syllables per second (uploaded):** {result:.2f}")


# -----------------------------
# SECTION: Audio Recorder
# -----------------------------
st.write("---")
st.subheader("Or record audio from your microphone")

# The st_audiorec component returns base64 encoded wav data
recorded_data = st_audiorec()

if recorded_data is not None:
    st.info("Audio recording complete. Processing ...")
    
    # Check if recorded_data is bytes or string
    if isinstance(recorded_data, bytes):
        decoded = recorded_data
    else:
        # Convert the base64 encoded data to wav audio
        # recorded_data is a base64 string with headers, so we split off the prefix
        try:
            header, encoded = recorded_data.split(",", 1)
            decoded = base64.b64decode(encoded)
        except AttributeError:
            st.error("Unexpected audio format received from recorder")
            st.stop()

    # Rest of the processing remains the same
    audio_segment = AudioSegment.from_file(io.BytesIO(decoded), format="wav")
    wav_io = io.BytesIO()
    audio_segment.export(wav_io, format="wav")
    wav_bytes = wav_io.getvalue()

    # Run the analysis using the same function
    with st.spinner("Analyzing your recorded audio..."):
        recorded_result = get_syllables_per_second(wav_bytes)
        st.write(f"**Syllables per second (recorded):** {recorded_result:.2f}")