Update py/db_storage.py
Browse files- py/db_storage.py +182 -182
py/db_storage.py
CHANGED
@@ -1,183 +1,183 @@
|
|
1 |
-
import os
|
2 |
-
import warnings
|
3 |
-
import shutil
|
4 |
-
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
|
5 |
-
from langchain_community.vectorstores import Chroma
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.chains import RetrievalQA
|
8 |
-
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, WikipediaLoader
|
9 |
-
from typing import List, Optional, Dict, Any
|
10 |
-
from langchain.schema import Document
|
11 |
-
import chromadb
|
12 |
-
# from langchain_community.embeddings.sentence_transformer import (SentenceTransformerEmbeddings)
|
13 |
-
from langchain_community.vectorstores import FAISS
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
warnings.filterwarnings("ignore")
|
18 |
-
CHROMA_DB_PATH = os.path.join(os.getcwd(), "
|
19 |
-
# FAISS_DB_PATH = os.path.join(os.getcwd(), "
|
20 |
-
tesla_10k_collection = 'tesla-10k-2019-to-2023'
|
21 |
-
embedding_model = ""
|
22 |
-
# embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
23 |
-
|
24 |
-
|
25 |
-
class DBStorage:
|
26 |
-
def __init__(self):
|
27 |
-
self.CHROMA_PATH = CHROMA_DB_PATH
|
28 |
-
self.vector_store = None
|
29 |
-
self.client = chromadb.PersistentClient(path=CHROMA_DB_PATH)
|
30 |
-
print(self.client.list_collections())
|
31 |
-
self.collection = self.client.get_or_create_collection(name=tesla_10k_collection)
|
32 |
-
print(self.collection.count())
|
33 |
-
|
34 |
-
def chunk_data(self, data, chunk_size=10000):
|
35 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0)
|
36 |
-
return text_splitter.split_documents(data)
|
37 |
-
|
38 |
-
def create_embeddings(self, chunks):
|
39 |
-
embeddings = AzureOpenAIEmbeddings(
|
40 |
-
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
41 |
-
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
42 |
-
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
43 |
-
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
44 |
-
)
|
45 |
-
|
46 |
-
self.vector_store = Chroma.from_documents(documents=chunks,
|
47 |
-
# embedding=embeddings,
|
48 |
-
embedding=embedding_model,
|
49 |
-
collection_name=tesla_10k_collection,
|
50 |
-
persist_directory=self.CHROMA_PATH)
|
51 |
-
print("Here B")
|
52 |
-
self.collection = self.client.get_or_create_collection(name=tesla_10k_collection)
|
53 |
-
print("here"+str(self.collection.count()))
|
54 |
-
# return self.vector_store
|
55 |
-
|
56 |
-
def create_vector_store(self, chunks):
|
57 |
-
embeddings = AzureOpenAIEmbeddings(
|
58 |
-
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
59 |
-
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
60 |
-
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
61 |
-
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
62 |
-
)
|
63 |
-
return FAISS.from_documents(chunks, embedding=embeddings)
|
64 |
-
# vector_store.save_local(FAISS_DB_PATH)
|
65 |
-
|
66 |
-
|
67 |
-
def load_embeddings(self):
|
68 |
-
embeddings = AzureOpenAIEmbeddings(
|
69 |
-
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
70 |
-
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
71 |
-
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
72 |
-
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
73 |
-
)
|
74 |
-
|
75 |
-
self.vector_store = Chroma(collection_name=tesla_10k_collection,
|
76 |
-
persist_directory=CHROMA_DB_PATH,
|
77 |
-
# embedding_function=embeddings
|
78 |
-
embedding_function=embedding_model
|
79 |
-
)
|
80 |
-
print("loaded vector store: ")
|
81 |
-
print(self.vector_store)
|
82 |
-
# return self.vector_store
|
83 |
-
|
84 |
-
def load_vectors(self,FAISS_DB_PATH):
|
85 |
-
embeddings = AzureOpenAIEmbeddings(
|
86 |
-
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
87 |
-
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
88 |
-
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
89 |
-
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
90 |
-
)
|
91 |
-
|
92 |
-
self.vector_store = FAISS.load_local(folder_path=FAISS_DB_PATH,
|
93 |
-
embeddings=embeddings,
|
94 |
-
allow_dangerous_deserialization=True)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
def fetch_documents(self, metadata_filter: Dict[str, Any]) -> List[Document]:
|
99 |
-
results = self.collection.get(
|
100 |
-
where=metadata_filter,
|
101 |
-
include=["documents", "metadatas"],
|
102 |
-
)
|
103 |
-
|
104 |
-
documents = []
|
105 |
-
for content, metadata in zip(results['documents'][0], results['metadatas'][0]):
|
106 |
-
documents.append(Document(page_content=content, metadata=metadata))
|
107 |
-
|
108 |
-
return documents
|
109 |
-
|
110 |
-
|
111 |
-
def get_context_for_query(self, question, k=3):
|
112 |
-
print(self.vector_store)
|
113 |
-
# if not self.vector_store:
|
114 |
-
# raise ValueError("Vector store not initialized. Call create_embeddings() or load_embeddings() first.")
|
115 |
-
|
116 |
-
# relevant_document_chunks=self.fetch_documents({"company": question})
|
117 |
-
|
118 |
-
# retriever = self.vector_store.as_retriever(search_type='similarity', search_kwargs={'k': k})
|
119 |
-
# relevant_document_chunks = retriever.get_relevant_documents(question)
|
120 |
-
|
121 |
-
relevant_document_chunks = self.vector_store.similarity_search(question)
|
122 |
-
# chain = get_conversational_chain(models.llm)
|
123 |
-
# response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
124 |
-
# print(response)
|
125 |
-
|
126 |
-
print(relevant_document_chunks)
|
127 |
-
context_list = [d.page_content for d in relevant_document_chunks]
|
128 |
-
context_for_query = ". ".join(context_list)
|
129 |
-
print("context_for_query: "+ str(len(context_for_query)))
|
130 |
-
|
131 |
-
return context_for_query
|
132 |
-
|
133 |
-
# def ask_question(self, question, k=3):
|
134 |
-
# if not self.vector_store:
|
135 |
-
# raise ValueError("Vector store not initialized. Call create_embeddings() or load_embeddings() first.")
|
136 |
-
|
137 |
-
# llm = AzureChatOpenAI(
|
138 |
-
# temperature=0,
|
139 |
-
# api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
140 |
-
# api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
141 |
-
# azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
142 |
-
# model=os.getenv("AZURE_OPENAI_MODEL_NAME")
|
143 |
-
# )
|
144 |
-
|
145 |
-
# retriever = self.vector_store.as_retriever(search_type='similarity', search_kwargs={'k': k})
|
146 |
-
# chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
147 |
-
|
148 |
-
# return chain.invoke(question)
|
149 |
-
|
150 |
-
def embed_vectors(self,social_media_document,FAISS_DB_PATH):
|
151 |
-
print("here A")
|
152 |
-
chunks = self.chunk_data(social_media_document)
|
153 |
-
print(len(chunks))
|
154 |
-
# self.create_embeddings(chunks)
|
155 |
-
vector_store = self.create_vector_store(chunks)
|
156 |
-
check_and_delete(FAISS_DB_PATH)
|
157 |
-
vector_store.save_local(FAISS_DB_PATH)
|
158 |
-
|
159 |
-
def check_and_delete(PATH):
|
160 |
-
if os.path.isdir(PATH):
|
161 |
-
shutil.rmtree(PATH, onexc=lambda func, path, exc: os.chmod(path, 0o777))
|
162 |
-
print(f'Deleted {PATH}')
|
163 |
-
|
164 |
-
def clear_db():
|
165 |
-
check_and_delete(CHROMA_DB_PATH)
|
166 |
-
# check_and_delete(FAISS_DB_PATH)
|
167 |
-
|
168 |
-
|
169 |
-
# Usage example
|
170 |
-
if __name__ == "__main__":
|
171 |
-
qa_system = DBStorage()
|
172 |
-
|
173 |
-
# Load and process document
|
174 |
-
social_media_document = []
|
175 |
-
chunks = qa_system.chunk_data(social_media_document)
|
176 |
-
|
177 |
-
# Create embeddings
|
178 |
-
qa_system.create_embeddings(chunks)
|
179 |
-
|
180 |
-
# # Ask a question
|
181 |
-
# question = 'Summarize the whole input in 150 words'
|
182 |
-
# answer = qa_system.ask_question(question)
|
183 |
# print(answer)
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
import shutil
|
4 |
+
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, WikipediaLoader
|
9 |
+
from typing import List, Optional, Dict, Any
|
10 |
+
from langchain.schema import Document
|
11 |
+
import chromadb
|
12 |
+
# from langchain_community.embeddings.sentence_transformer import (SentenceTransformerEmbeddings)
|
13 |
+
from langchain_community.vectorstores import FAISS
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
CHROMA_DB_PATH = os.path.join(os.getcwd(), "chroma_db")
|
19 |
+
# FAISS_DB_PATH = os.path.join(os.getcwd(), "faiss_index")
|
20 |
+
tesla_10k_collection = 'tesla-10k-2019-to-2023'
|
21 |
+
embedding_model = ""
|
22 |
+
# embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
23 |
+
|
24 |
+
|
25 |
+
class DBStorage:
|
26 |
+
def __init__(self):
|
27 |
+
self.CHROMA_PATH = CHROMA_DB_PATH
|
28 |
+
self.vector_store = None
|
29 |
+
self.client = chromadb.PersistentClient(path=CHROMA_DB_PATH)
|
30 |
+
print(self.client.list_collections())
|
31 |
+
self.collection = self.client.get_or_create_collection(name=tesla_10k_collection)
|
32 |
+
print(self.collection.count())
|
33 |
+
|
34 |
+
def chunk_data(self, data, chunk_size=10000):
|
35 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0)
|
36 |
+
return text_splitter.split_documents(data)
|
37 |
+
|
38 |
+
def create_embeddings(self, chunks):
|
39 |
+
embeddings = AzureOpenAIEmbeddings(
|
40 |
+
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
41 |
+
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
42 |
+
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
43 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
44 |
+
)
|
45 |
+
|
46 |
+
self.vector_store = Chroma.from_documents(documents=chunks,
|
47 |
+
# embedding=embeddings,
|
48 |
+
embedding=embedding_model,
|
49 |
+
collection_name=tesla_10k_collection,
|
50 |
+
persist_directory=self.CHROMA_PATH)
|
51 |
+
print("Here B")
|
52 |
+
self.collection = self.client.get_or_create_collection(name=tesla_10k_collection)
|
53 |
+
print("here"+str(self.collection.count()))
|
54 |
+
# return self.vector_store
|
55 |
+
|
56 |
+
def create_vector_store(self, chunks):
|
57 |
+
embeddings = AzureOpenAIEmbeddings(
|
58 |
+
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
59 |
+
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
60 |
+
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
61 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
62 |
+
)
|
63 |
+
return FAISS.from_documents(chunks, embedding=embeddings)
|
64 |
+
# vector_store.save_local(FAISS_DB_PATH)
|
65 |
+
|
66 |
+
|
67 |
+
def load_embeddings(self):
|
68 |
+
embeddings = AzureOpenAIEmbeddings(
|
69 |
+
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
70 |
+
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
71 |
+
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
72 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
73 |
+
)
|
74 |
+
|
75 |
+
self.vector_store = Chroma(collection_name=tesla_10k_collection,
|
76 |
+
persist_directory=CHROMA_DB_PATH,
|
77 |
+
# embedding_function=embeddings
|
78 |
+
embedding_function=embedding_model
|
79 |
+
)
|
80 |
+
print("loaded vector store: ")
|
81 |
+
print(self.vector_store)
|
82 |
+
# return self.vector_store
|
83 |
+
|
84 |
+
def load_vectors(self,FAISS_DB_PATH):
|
85 |
+
embeddings = AzureOpenAIEmbeddings(
|
86 |
+
model=os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
|
87 |
+
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_API_KEY"),
|
88 |
+
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
|
89 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
|
90 |
+
)
|
91 |
+
|
92 |
+
self.vector_store = FAISS.load_local(folder_path=FAISS_DB_PATH,
|
93 |
+
embeddings=embeddings,
|
94 |
+
allow_dangerous_deserialization=True)
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
def fetch_documents(self, metadata_filter: Dict[str, Any]) -> List[Document]:
|
99 |
+
results = self.collection.get(
|
100 |
+
where=metadata_filter,
|
101 |
+
include=["documents", "metadatas"],
|
102 |
+
)
|
103 |
+
|
104 |
+
documents = []
|
105 |
+
for content, metadata in zip(results['documents'][0], results['metadatas'][0]):
|
106 |
+
documents.append(Document(page_content=content, metadata=metadata))
|
107 |
+
|
108 |
+
return documents
|
109 |
+
|
110 |
+
|
111 |
+
def get_context_for_query(self, question, k=3):
|
112 |
+
print(self.vector_store)
|
113 |
+
# if not self.vector_store:
|
114 |
+
# raise ValueError("Vector store not initialized. Call create_embeddings() or load_embeddings() first.")
|
115 |
+
|
116 |
+
# relevant_document_chunks=self.fetch_documents({"company": question})
|
117 |
+
|
118 |
+
# retriever = self.vector_store.as_retriever(search_type='similarity', search_kwargs={'k': k})
|
119 |
+
# relevant_document_chunks = retriever.get_relevant_documents(question)
|
120 |
+
|
121 |
+
relevant_document_chunks = self.vector_store.similarity_search(question)
|
122 |
+
# chain = get_conversational_chain(models.llm)
|
123 |
+
# response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
124 |
+
# print(response)
|
125 |
+
|
126 |
+
print(relevant_document_chunks)
|
127 |
+
context_list = [d.page_content for d in relevant_document_chunks]
|
128 |
+
context_for_query = ". ".join(context_list)
|
129 |
+
print("context_for_query: "+ str(len(context_for_query)))
|
130 |
+
|
131 |
+
return context_for_query
|
132 |
+
|
133 |
+
# def ask_question(self, question, k=3):
|
134 |
+
# if not self.vector_store:
|
135 |
+
# raise ValueError("Vector store not initialized. Call create_embeddings() or load_embeddings() first.")
|
136 |
+
|
137 |
+
# llm = AzureChatOpenAI(
|
138 |
+
# temperature=0,
|
139 |
+
# api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
140 |
+
# api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
141 |
+
# azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
142 |
+
# model=os.getenv("AZURE_OPENAI_MODEL_NAME")
|
143 |
+
# )
|
144 |
+
|
145 |
+
# retriever = self.vector_store.as_retriever(search_type='similarity', search_kwargs={'k': k})
|
146 |
+
# chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
147 |
+
|
148 |
+
# return chain.invoke(question)
|
149 |
+
|
150 |
+
def embed_vectors(self,social_media_document,FAISS_DB_PATH):
|
151 |
+
print("here A")
|
152 |
+
chunks = self.chunk_data(social_media_document)
|
153 |
+
print(len(chunks))
|
154 |
+
# self.create_embeddings(chunks)
|
155 |
+
vector_store = self.create_vector_store(chunks)
|
156 |
+
check_and_delete(FAISS_DB_PATH)
|
157 |
+
vector_store.save_local(FAISS_DB_PATH)
|
158 |
+
|
159 |
+
def check_and_delete(PATH):
|
160 |
+
if os.path.isdir(PATH):
|
161 |
+
shutil.rmtree(PATH, onexc=lambda func, path, exc: os.chmod(path, 0o777))
|
162 |
+
print(f'Deleted {PATH}')
|
163 |
+
|
164 |
+
def clear_db():
|
165 |
+
check_and_delete(CHROMA_DB_PATH)
|
166 |
+
# check_and_delete(FAISS_DB_PATH)
|
167 |
+
|
168 |
+
|
169 |
+
# Usage example
|
170 |
+
if __name__ == "__main__":
|
171 |
+
qa_system = DBStorage()
|
172 |
+
|
173 |
+
# Load and process document
|
174 |
+
social_media_document = []
|
175 |
+
chunks = qa_system.chunk_data(social_media_document)
|
176 |
+
|
177 |
+
# Create embeddings
|
178 |
+
qa_system.create_embeddings(chunks)
|
179 |
+
|
180 |
+
# # Ask a question
|
181 |
+
# question = 'Summarize the whole input in 150 words'
|
182 |
+
# answer = qa_system.ask_question(question)
|
183 |
# print(answer)
|