Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
from multitest import MultiTest | |
from tqdm import tqdm | |
import logging | |
def truncae_to_max_no_tokens(text, max_no_tokens): | |
return " ".join(text.split()[:max_no_tokens]) | |
class DetectLM(object): | |
def __init__(self, sentence_detection_function, survival_function_per_length, | |
min_len=4, max_len=100, HC_type="stbl", | |
length_limit_policy='truncate', ignore_first_sentence=False): | |
""" | |
Test for the presence of sentences of irregular origin as reflected by the | |
sentence_detection_function. The test is based on the sentence detection function | |
and the P-values obtained from the survival function of the detector's responses. | |
Args: | |
---- | |
:sentence_detection_function: a function returning the response of the text | |
under the detector. Typically, the response is a logloss value under some language model. | |
:survival_function_per_length: survival_function_per_length(l, x) is the probability of the language | |
model to produce a sentence value as extreme as x or more when the sentence s is the input to | |
the detector. The function is defined for every sentence length l. | |
The detector can also recieve a context c, in which case the input is the pair (s, c). | |
:length_limit_policy: When a sentence exceeds ``max_len``, we can: | |
'truncate': truncate sentence to the maximal length :max_len | |
'ignore': do not evaluate the response and P-value for this sentence | |
'max_available': use the logloss function of the maximal available length | |
:ignore_first_sentence: whether to ignore the first sentence in the document or not. Useful when assuming | |
context of the form previous sentence. | |
""" | |
self.survival_function_per_length = survival_function_per_length | |
self.sentence_detector = sentence_detection_function | |
self.min_len = min_len | |
self.max_len = max_len | |
self.length_limit_policy = length_limit_policy | |
self.ignore_first_sentence = ignore_first_sentence | |
self.HC_stbl = True if HC_type == 'stbl' else False | |
def _logperp(self, sent: str, context=None) -> float: | |
return float(self.sentence_detector(sent, context)) | |
def _test_sentence(self, sentence: str, context=None): | |
return self._logperp(sentence, context) | |
def _get_length(self, sentence: str): | |
return len(sentence.split()) | |
def _test_response(self, response: float, length: int): | |
""" | |
Args: | |
response: sentence logloss | |
length: sentence length in tokens | |
Returns: | |
pvals: P-value of the logloss of the sentence | |
comments: comment on the P-value | |
""" | |
if self.min_len <= length: | |
comment = "OK" | |
if length > self.max_len: # in case length exceeds specifications... | |
if self.length_limit_policy == 'truncate': | |
length = self.max_len | |
comment = f"truncated to {self.max_len} tokens" | |
elif self.length_limit_policy == 'ignore': | |
comment = "ignored (above maximum limit)" | |
return np.nan, np.nan, comment | |
elif self.length_limit_policy == 'max_available': | |
comment = "exceeding length limit; resorting to max-available length" | |
length = self.max_len | |
pval = self.survival_function_per_length(length, response) | |
assert pval >= 0, "Negative P-value. Something is wrong." | |
return dict(response=response, | |
pvalue=pval, | |
length=length, | |
comment=comment) | |
else: | |
comment = "ignored (below minimal length)" | |
return dict(response=response, | |
pvalue=np.nan, | |
length=length, | |
comment=comment) | |
def _get_pvals(self, responses: list, lengths: list) -> tuple: | |
pvals = [] | |
comments = [] | |
for response, length in zip(responses, lengths): | |
r = self._test_response(response, length) | |
pvals.append(float(r['pvalue'])) | |
comments.append(r['comment']) | |
return pvals, comments | |
def _get_responses(self, sentences: list, contexts: list) -> list: | |
""" | |
Compute response and length of a text sentence | |
""" | |
assert len(sentences) == len(contexts) | |
responses = [] | |
lengths = [] | |
for sent, ctx in tqdm(zip(sentences, contexts)): | |
logging.debug(f"Testing sentence: {sent} | context: {ctx}") | |
length = self._get_length(sent) | |
if self.length_limit_policy == 'truncate': | |
sent = truncae_to_max_no_tokens(sent, self.max_len) | |
if length == 1: | |
logging.warning(f"Sentence {sent} is too short. Skipping.") | |
responses.append(np.nan) | |
continue | |
try: | |
responses.append(self._test_sentence(sent, ctx)) | |
except: | |
# something unusual happened... | |
import pdb; pdb.set_trace() | |
lengths.append(length) | |
return responses, lengths | |
def get_pvals(self, sentences: list, contexts: list) -> tuple: | |
""" | |
logloss test of every (sentence, context) pair | |
""" | |
assert len(sentences) == len(contexts) | |
responses, lengths = self._get_responses(sentences, contexts) | |
pvals, comments = self._get_pvals(responses, lengths) | |
return pvals, responses, comments | |
def testHC(self, sentences: list) -> float: | |
pvals = np.array(self.get_pvals(sentences)[1]) | |
mt = MultiTest(pvals, stbl=self.HC_stbl) | |
return mt.hc(gamma=0.4)[0] | |
def testFisher(self, sentences: list) -> dict: | |
pvals = np.array(self.get_pvals(sentences)[1]) | |
print(pvals) | |
mt = MultiTest(pvals, stbl=self.HC_stbl) | |
return dict(zip(['Fn', 'pvalue'], mt.fisher())) | |
def _test_chunked_doc(self, lo_chunks: list, lo_contexts: list) -> tuple: | |
pvals, responses, comments = self.get_pvals(lo_chunks, lo_contexts) | |
if self.ignore_first_sentence: | |
pvals[0] = np.nan | |
logging.info('Ignoring the first sentence.') | |
comments[0] = "ignored (first sentence)" | |
df = pd.DataFrame({'sentence': lo_chunks, 'response': responses, 'pvalue': pvals, | |
'context': lo_contexts, 'comment': comments}, | |
index=range(len(lo_chunks))) | |
df_test = df[~df.pvalue.isna()] | |
if df_test.empty: | |
logging.warning('No valid chunks to test.') | |
return None, df | |
return MultiTest(df_test.pvalue, stbl=self.HC_stbl), df | |
def test_chunked_doc(self, lo_chunks: list, lo_contexts: list, dashboard=False) -> dict: | |
mt, df = self._test_chunked_doc(lo_chunks, lo_contexts) | |
if mt is None: | |
hc = np.nan | |
fisher = (np.nan, np.nan) | |
df['mask'] = pd.NA | |
else: | |
hc, hct = mt.hc(gamma=0.4) | |
fisher = mt.fisher() | |
df['mask'] = df['pvalue'] <= hct | |
if dashboard: | |
mt.hc_dashboard(gamma=0.4) | |
return dict(sentences=df, HC=hc, fisher=fisher[0], fisher_pvalue=fisher[1]) | |
def __call__(self, lo_chunks: list, lo_contexts: list, dashboard=False) -> dict: | |
return self.test_chunked_doc(lo_chunks, lo_contexts, dashboard=dashboard) |