""" This script computes the survival function of the HC statistic for a given sample size n. The survival function is computed using a simulation of the null distribution of the HC statistic. We use the simulation results to fit a bivariate function of the form Pr[HC >= x | n] = f(n, x). The simulation results are saved in a file named HC_null_sim_results.csv. use function get_HC_survival_function to load the bivariate function or simulate the distribution. """ import numpy as np import pandas as pd from multitest import MultiTest from tqdm import tqdm from scipy.interpolate import RectBivariateSpline from src.fit_survival_function import fit_survival_func import logging HC_NULL_SIM_FILE = "HC_null_sim_results.csv" STBL = True NN = [25, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500] # values of n to simulate def get_HC_survival_function(HC_null_sim_file, log_space=True, nMonte=10000, STBL=True): xx = {} if HC_null_sim_file is None: logging.info("Simulated HC null values file was not provided.") for n in tqdm(NN): logging.info(f"Simulating HC null values for n={n}...") yy = np.zeros(nMonte) for j in range(nMonte): uu = np.random.rand(n) mt = MultiTest(uu, stbl=STBL) yy[j] = mt.hc()[0] xx[n] = yy nn = NN # Idan else: logging.info(f"Loading HC null values from {HC_null_sim_file}...") df = pd.read_csv(HC_null_sim_file, index_col=0) for n in df.index: xx[n] = df.loc[n] nn = df.index.tolist() xx0 = np.linspace(-1, 10, 57) zz = [] for n in nn: univariate_survival_func = fit_survival_func(xx[n], log_space=log_space) zz.append(univariate_survival_func(xx0)) func_log = RectBivariateSpline(np.array(nn), xx0, np.vstack(zz)) if log_space: def func(x, y): return np.exp(-func_log(x,y)) return func else: return func_log def main(): func = get_HC_survival_function(HC_null_sim_file=HC_NULL_SIM_FILE, STBL=STBL) print("Pr[HC >= 3 |n=50] = ", func(50, 3)[0][0]) # 9.680113e-05 print("Pr[HC >= 3 |n=100] = ", func(100, 3)[0][0]) # 0.0002335 print("Pr[HC >= 3 |n=200] = ", func(200, 3)[0][0]) # 0.00103771 if __name__ == '__main__': main()