import numpy as np import pandas as pd from multitest import MultiTest from tqdm import tqdm import logging def truncae_to_max_no_tokens(text, max_no_tokens): return " ".join(text.split()[:max_no_tokens]) class DetectLM(object): def __init__(self, sentence_detection_function, survival_function_per_length, min_len=4, max_len=100, HC_type="stbl", length_limit_policy='truncate', ignore_first_sentence=False): """ Test for the presence of sentences of irregular origin as reflected by the sentence_detection_function. The test is based on the sentence detection function and the P-values obtained from the survival function of the detector's responses. Args: ---- :sentence_detection_function: a function returning the response of the text under the detector. Typically, the response is a logloss value under some language model. :survival_function_per_length: survival_function_per_length(l, x) is the probability of the language model to produce a sentence value as extreme as x or more when the sentence s is the input to the detector. The function is defined for every sentence length l. The detector can also recieve a context c, in which case the input is the pair (s, c). :length_limit_policy: When a sentence exceeds ``max_len``, we can: 'truncate': truncate sentence to the maximal length :max_len 'ignore': do not evaluate the response and P-value for this sentence 'max_available': use the logloss function of the maximal available length :ignore_first_sentence: whether to ignore the first sentence in the document or not. Useful when assuming context of the form previous sentence. """ self.survival_function_per_length = survival_function_per_length self.sentence_detector = sentence_detection_function self.min_len = min_len self.max_len = max_len self.length_limit_policy = length_limit_policy self.ignore_first_sentence = ignore_first_sentence self.HC_stbl = True if HC_type == 'stbl' else False def _logperp(self, sent: str, context=None) -> float: return float(self.sentence_detector(sent, context)) def _test_sentence(self, sentence: str, context=None): return self._logperp(sentence, context) def _get_length(self, sentence: str): return len(sentence.split()) def _test_response(self, response: float, length: int): """ Args: response: sentence logloss length: sentence length in tokens Returns: pvals: P-value of the logloss of the sentence comments: comment on the P-value """ if self.min_len <= length: comment = "OK" if length > self.max_len: # in case length exceeds specifications... if self.length_limit_policy == 'truncate': length = self.max_len comment = f"truncated to {self.max_len} tokens" elif self.length_limit_policy == 'ignore': comment = "ignored (above maximum limit)" return np.nan, np.nan, comment elif self.length_limit_policy == 'max_available': comment = "exceeding length limit; resorting to max-available length" length = self.max_len pval = self.survival_function_per_length(length, response) assert pval >= 0, "Negative P-value. Something is wrong." return dict(response=response, pvalue=pval, length=length, comment=comment) else: comment = "ignored (below minimal length)" return dict(response=response, pvalue=np.nan, length=length, comment=comment) def _get_pvals(self, responses: list, lengths: list) -> tuple: pvals = [] comments = [] for response, length in zip(responses, lengths): r = self._test_response(response, length) pvals.append(float(r['pvalue'])) comments.append(r['comment']) return pvals, comments def _get_responses(self, sentences: list, contexts: list) -> list: """ Compute response and length of a text sentence """ assert len(sentences) == len(contexts) responses = [] lengths = [] for sent, ctx in tqdm(zip(sentences, contexts)): logging.debug(f"Testing sentence: {sent} | context: {ctx}") length = self._get_length(sent) if self.length_limit_policy == 'truncate': sent = truncae_to_max_no_tokens(sent, self.max_len) if length == 1: logging.warning(f"Sentence {sent} is too short. Skipping.") responses.append(np.nan) continue try: responses.append(self._test_sentence(sent, ctx)) except: # something unusual happened... import pdb; pdb.set_trace() lengths.append(length) return responses, lengths def get_pvals(self, sentences: list, contexts: list) -> tuple: """ logloss test of every (sentence, context) pair """ assert len(sentences) == len(contexts) responses, lengths = self._get_responses(sentences, contexts) pvals, comments = self._get_pvals(responses, lengths) return pvals, responses, comments def testHC(self, sentences: list) -> float: pvals = np.array(self.get_pvals(sentences)[1]) mt = MultiTest(pvals, stbl=self.HC_stbl) return mt.hc(gamma=0.4)[0] def testFisher(self, sentences: list) -> dict: pvals = np.array(self.get_pvals(sentences)[1]) print(pvals) mt = MultiTest(pvals, stbl=self.HC_stbl) return dict(zip(['Fn', 'pvalue'], mt.fisher())) def _test_chunked_doc(self, lo_chunks: list, lo_contexts: list) -> tuple: pvals, responses, comments = self.get_pvals(lo_chunks, lo_contexts) if self.ignore_first_sentence: pvals[0] = np.nan logging.info('Ignoring the first sentence.') comments[0] = "ignored (first sentence)" df = pd.DataFrame({'sentence': lo_chunks, 'response': responses, 'pvalue': pvals, 'context': lo_contexts, 'comment': comments}, index=range(len(lo_chunks))) df_test = df[~df.pvalue.isna()] if df_test.empty: logging.warning('No valid chunks to test.') return None, df return MultiTest(df_test.pvalue, stbl=self.HC_stbl), df def test_chunked_doc(self, lo_chunks: list, lo_contexts: list, dashboard=False) -> dict: mt, df = self._test_chunked_doc(lo_chunks, lo_contexts) if mt is None: hc = np.nan fisher = (np.nan, np.nan) df['mask'] = pd.NA else: hc, hct = mt.hc(gamma=0.4) fisher = mt.fisher() df['mask'] = df['pvalue'] <= hct if dashboard: mt.hc_dashboard(gamma=0.4) return dict(sentences=df, HC=hc, fisher=fisher[0], fisher_pvalue=fisher[1]) def __call__(self, lo_chunks: list, lo_contexts: list, dashboard=False) -> dict: return self.test_chunked_doc(lo_chunks, lo_contexts, dashboard=dashboard)