Spaces:
Runtime error
Runtime error
Merge pull request #1 from LightricksResearch/eval-pipeline
Browse files- poetry.lock +0 -0
- pyproject.toml +0 -16
- requirements.txt +48 -0
- setup.py +23 -0
- xora/__init__.py +1 -0
- xora/examples/text_to_video.py +88 -0
- xora/models/__init__.py +0 -0
- xora/models/autoencoders/__init__.py +0 -0
- xora/models/autoencoders/causal_conv3d.py +54 -0
- xora/models/autoencoders/causal_video_autoencoder.py +763 -0
- xora/models/autoencoders/conv_nd_factory.py +78 -0
- xora/models/autoencoders/dual_conv3d.py +165 -0
- xora/models/autoencoders/pixel_norm.py +12 -0
- xora/models/autoencoders/vae.py +280 -0
- xora/models/autoencoders/vae_encode.py +171 -0
- xora/models/transformers/__init__.py +0 -0
- xora/models/transformers/attention.py +1064 -0
- xora/models/transformers/symmetric_patchifier.py +88 -0
- xora/models/transformers/transformer3d.py +360 -0
- xora/pipelines/__init__.py +0 -0
- xora/pipelines/pipeline_video_pixart_alpha.py +859 -0
- xora/schedulers/__init__.py +0 -0
- xora/schedulers/rf.py +222 -0
- xora/utils/__init__.py +0 -0
- xora/utils/torch_utils.py +10 -0
poetry.lock
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
[tool.poetry]
|
2 |
-
name = "xora-core"
|
3 |
-
version = "0.1.0"
|
4 |
-
description = ""
|
5 |
-
authors = ["Your Name <[email protected]>"]
|
6 |
-
readme = "README.md"
|
7 |
-
|
8 |
-
[tool.poetry.dependencies]
|
9 |
-
python = "^3.10"
|
10 |
-
torch = "2.3.0"
|
11 |
-
diffusers = "0.28.2"
|
12 |
-
|
13 |
-
|
14 |
-
[build-system]
|
15 |
-
requires = ["poetry-core"]
|
16 |
-
build-backend = "poetry.core.masonry.api"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.34.2 ; python_version >= "3.10" and python_version < "4.0"
|
2 |
+
certifi==2024.8.30 ; python_version >= "3.10" and python_version < "4.0"
|
3 |
+
charset-normalizer==3.3.2 ; python_version >= "3.10" and python_version < "4.0"
|
4 |
+
colorama==0.4.6 ; python_version >= "3.10" and python_version < "4.0" and platform_system == "Windows"
|
5 |
+
diffusers==0.28.2 ; python_version >= "3.10" and python_version < "4.0"
|
6 |
+
einops==0.6.1 ; python_version >= "3.10" and python_version < "4.0"
|
7 |
+
filelock==3.16.1 ; python_version >= "3.10" and python_version < "4.0"
|
8 |
+
fsspec==2024.9.0 ; python_version >= "3.10" and python_version < "4.0"
|
9 |
+
huggingface-hub==0.25.1 ; python_version >= "3.10" and python_version < "4.0"
|
10 |
+
idna==3.10 ; python_version >= "3.10" and python_version < "4.0"
|
11 |
+
importlib-metadata==8.5.0 ; python_version >= "3.10" and python_version < "4.0"
|
12 |
+
intel-openmp==2021.4.0 ; python_version >= "3.10" and python_version < "4.0" and platform_system == "Windows"
|
13 |
+
jinja2==3.1.4 ; python_version >= "3.10" and python_version < "4.0"
|
14 |
+
markupsafe==2.1.5 ; python_version >= "3.10" and python_version < "4.0"
|
15 |
+
mkl==2021.4.0 ; python_version >= "3.10" and python_version < "4.0" and platform_system == "Windows"
|
16 |
+
mpmath==1.3.0 ; python_version >= "3.10" and python_version < "4.0"
|
17 |
+
networkx==3.3 ; python_version >= "3.10" and python_version < "4.0"
|
18 |
+
numpy==2.1.1 ; python_version >= "3.10" and python_version < "4.0"
|
19 |
+
nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
20 |
+
nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
21 |
+
nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
22 |
+
nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
23 |
+
nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
24 |
+
nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
25 |
+
nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
26 |
+
nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
27 |
+
nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
28 |
+
nvidia-nccl-cu12==2.20.5 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
29 |
+
nvidia-nvjitlink-cu12==12.6.68 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
30 |
+
nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.10" and python_version < "4.0"
|
31 |
+
packaging==24.1 ; python_version >= "3.10" and python_version < "4.0"
|
32 |
+
pillow==10.4.0 ; python_version >= "3.10" and python_version < "4.0"
|
33 |
+
psutil==6.0.0 ; python_version >= "3.10" and python_version < "4.0"
|
34 |
+
pyyaml==6.0.2 ; python_version >= "3.10" and python_version < "4.0"
|
35 |
+
regex==2024.9.11 ; python_version >= "3.10" and python_version < "4.0"
|
36 |
+
requests==2.32.3 ; python_version >= "3.10" and python_version < "4.0"
|
37 |
+
safetensors==0.4.5 ; python_version >= "3.10" and python_version < "4.0"
|
38 |
+
sentencepiece==0.2.0 ; python_version >= "3.10" and python_version < "4.0"
|
39 |
+
sympy==1.13.3 ; python_version >= "3.10" and python_version < "4.0"
|
40 |
+
tbb==2021.13.1 ; python_version >= "3.10" and python_version < "4.0" and platform_system == "Windows"
|
41 |
+
tokenizers==0.19.1 ; python_version >= "3.10" and python_version < "4.0"
|
42 |
+
torch==2.3.0 ; python_version >= "3.10" and python_version < "4.0"
|
43 |
+
tqdm==4.66.5 ; python_version >= "3.10" and python_version < "4.0"
|
44 |
+
transformers==4.44.2 ; python_version >= "3.10" and python_version < "4.0"
|
45 |
+
triton==2.3.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version < "3.12" and python_version >= "3.10"
|
46 |
+
typing-extensions==4.12.2 ; python_version >= "3.10" and python_version < "4.0"
|
47 |
+
urllib3==2.2.3 ; python_version >= "3.10" and python_version < "4.0"
|
48 |
+
zipp==3.20.2 ; python_version >= "3.10" and python_version < "4.0"
|
setup.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
def parse_requirements(filename):
|
3 |
+
"""Load requirements from a pip requirements file."""
|
4 |
+
with open(filename, 'r') as file:
|
5 |
+
return file.read().splitlines()
|
6 |
+
|
7 |
+
|
8 |
+
setup(
|
9 |
+
name="xora-core", # The name of your package
|
10 |
+
version="0.1.0", # Version number of the package
|
11 |
+
description="A package for Xora model inferece", # Short description
|
12 |
+
author="YSapir Weissbuch", # Your name
|
13 |
+
author_email="[email protected]", # Your email
|
14 |
+
url="https://github.com/LightricksResearch/xora-core", # URL for the project (GitHub, etc.)
|
15 |
+
packages=find_packages(), # Automatically find all packages inside `xora`
|
16 |
+
install_requires=parse_requirements('requirements.txt'), # Install dependencies from requirements.txt
|
17 |
+
classifiers=[
|
18 |
+
'Programming Language :: Python :: 3',
|
19 |
+
'License :: OSI Approved :: MIT License',
|
20 |
+
'Operating System :: OS Independent',
|
21 |
+
],
|
22 |
+
python_requires='>=3.10', # Specify Python version compatibility
|
23 |
+
)
|
xora/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .pipelines import *
|
xora/examples/text_to_video.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
3 |
+
from xora.models.transformers.transformer3d import Transformer3DModel
|
4 |
+
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
5 |
+
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
+
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
+
from pathlib import Path
|
8 |
+
from transformers import T5EncoderModel
|
9 |
+
|
10 |
+
|
11 |
+
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
12 |
+
vae_local_path = Path("/opt/models/checkpoints/vae_training/causal_vvae_32x32x8_420m_cont_32/step_2296000")
|
13 |
+
dtype = torch.float32
|
14 |
+
vae = CausalVideoAutoencoder.from_pretrained(
|
15 |
+
pretrained_model_name_or_path=vae_local_path,
|
16 |
+
revision=False,
|
17 |
+
torch_dtype=torch.bfloat16,
|
18 |
+
load_in_8bit=False,
|
19 |
+
).cuda()
|
20 |
+
transformer_config_path = Path("/opt/txt2img/txt2img/config/transformer3d/xora_v1.2-L.json")
|
21 |
+
transformer_config = Transformer3DModel.load_config(transformer_config_path)
|
22 |
+
transformer = Transformer3DModel.from_config(transformer_config)
|
23 |
+
transformer_local_path = Path("/opt/models/logs/v1.2-vae-mf-medHR-mr-cvae-nl/ckpt/01760000/model.pt")
|
24 |
+
transformer_ckpt_state_dict = torch.load(transformer_local_path)
|
25 |
+
transformer.load_state_dict(transformer_ckpt_state_dict, True)
|
26 |
+
transformer = transformer.cuda()
|
27 |
+
unet = transformer
|
28 |
+
scheduler_config_path = Path("/opt/txt2img/txt2img/config/scheduler/RF_SD3_shifted.json")
|
29 |
+
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
30 |
+
scheduler = RectifiedFlowScheduler.from_config(scheduler_config)
|
31 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
32 |
+
# text_encoder = T5EncoderModel.from_pretrained("t5-v1_1-xxl")
|
33 |
+
|
34 |
+
submodel_dict = {
|
35 |
+
"unet": unet,
|
36 |
+
"transformer": transformer,
|
37 |
+
"patchifier": patchifier,
|
38 |
+
"text_encoder": None,
|
39 |
+
"scheduler": scheduler,
|
40 |
+
"vae": vae,
|
41 |
+
|
42 |
+
}
|
43 |
+
|
44 |
+
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
45 |
+
safety_checker=None,
|
46 |
+
revision=None,
|
47 |
+
torch_dtype=dtype,
|
48 |
+
**submodel_dict,
|
49 |
+
)
|
50 |
+
|
51 |
+
num_inference_steps=20
|
52 |
+
num_images_per_prompt=2
|
53 |
+
guidance_scale=3
|
54 |
+
height=512
|
55 |
+
width=768
|
56 |
+
num_frames=57
|
57 |
+
frame_rate=25
|
58 |
+
# sample = {
|
59 |
+
# "prompt": "A cat", # (B, L, E)
|
60 |
+
# 'prompt_attention_mask': None, # (B , L)
|
61 |
+
# 'negative_prompt': "Ugly deformed",
|
62 |
+
# 'negative_prompt_attention_mask': None # (B , L)
|
63 |
+
# }
|
64 |
+
|
65 |
+
sample = torch.load("/opt/sample.pt")
|
66 |
+
for _, item in sample.items():
|
67 |
+
if item is not None:
|
68 |
+
item = item.cuda()
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
images = pipeline(
|
73 |
+
num_inference_steps=num_inference_steps,
|
74 |
+
num_images_per_prompt=num_images_per_prompt,
|
75 |
+
guidance_scale=guidance_scale,
|
76 |
+
generator=None,
|
77 |
+
output_type="pt",
|
78 |
+
callback_on_step_end=None,
|
79 |
+
height=height,
|
80 |
+
width=width,
|
81 |
+
num_frames=num_frames,
|
82 |
+
frame_rate=frame_rate,
|
83 |
+
**sample,
|
84 |
+
is_video=True,
|
85 |
+
vae_per_channel_normalize=True,
|
86 |
+
).images
|
87 |
+
|
88 |
+
print()
|
xora/models/__init__.py
ADDED
File without changes
|
xora/models/autoencoders/__init__.py
ADDED
File without changes
|
xora/models/autoencoders/causal_conv3d.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class CausalConv3d(nn.Module):
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
in_channels,
|
11 |
+
out_channels,
|
12 |
+
kernel_size: int = 3,
|
13 |
+
stride: Union[int, Tuple[int]] = 1,
|
14 |
+
**kwargs,
|
15 |
+
):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.in_channels = in_channels
|
19 |
+
self.out_channels = out_channels
|
20 |
+
|
21 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
22 |
+
self.time_kernel_size = kernel_size[0]
|
23 |
+
|
24 |
+
dilation = kwargs.pop("dilation", 1)
|
25 |
+
dilation = (dilation, 1, 1)
|
26 |
+
|
27 |
+
height_pad = kernel_size[1] // 2
|
28 |
+
width_pad = kernel_size[2] // 2
|
29 |
+
padding = (0, height_pad, width_pad)
|
30 |
+
|
31 |
+
self.conv = nn.Conv3d(
|
32 |
+
in_channels,
|
33 |
+
out_channels,
|
34 |
+
kernel_size,
|
35 |
+
stride=stride,
|
36 |
+
dilation=dilation,
|
37 |
+
padding=padding,
|
38 |
+
padding_mode="zeros",
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x, causal: bool = True):
|
42 |
+
if causal:
|
43 |
+
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.time_kernel_size - 1, 1, 1))
|
44 |
+
x = torch.concatenate((first_frame_pad, x), dim=2)
|
45 |
+
else:
|
46 |
+
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, (self.time_kernel_size - 1) // 2, 1, 1))
|
47 |
+
last_frame_pad = x[:, :, -1:, :, :].repeat((1, 1, (self.time_kernel_size - 1) // 2, 1, 1))
|
48 |
+
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
|
49 |
+
x = self.conv(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
@property
|
53 |
+
def weight(self):
|
54 |
+
return self.conv.weight
|
xora/models/autoencoders/causal_video_autoencoder.py
ADDED
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from functools import partial
|
4 |
+
from types import SimpleNamespace
|
5 |
+
from typing import Any, Mapping, Optional, Tuple, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from einops import rearrange
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from xora.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
|
13 |
+
from xora.models.autoencoders.pixel_norm import PixelNorm
|
14 |
+
from xora.models.autoencoders.vae import AutoencoderKLWrapper
|
15 |
+
|
16 |
+
|
17 |
+
class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
18 |
+
@classmethod
|
19 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *args, **kwargs):
|
20 |
+
config_local_path = pretrained_model_name_or_path / "config.json"
|
21 |
+
config = cls.load_config(config_local_path, **kwargs)
|
22 |
+
video_vae = cls.from_config(config)
|
23 |
+
video_vae.to(kwargs["torch_dtype"])
|
24 |
+
|
25 |
+
model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
|
26 |
+
ckpt_state_dict = torch.load(model_local_path, map_location=torch.device("cpu"))
|
27 |
+
video_vae.load_state_dict(ckpt_state_dict)
|
28 |
+
|
29 |
+
statistics_local_path = pretrained_model_name_or_path / "per_channel_statistics.json"
|
30 |
+
if statistics_local_path.exists():
|
31 |
+
with open(statistics_local_path, "r") as file:
|
32 |
+
data = json.load(file)
|
33 |
+
transposed_data = list(zip(*data["data"]))
|
34 |
+
data_dict = {col: torch.tensor(vals) for col, vals in zip(data["columns"], transposed_data)}
|
35 |
+
video_vae.register_buffer("std_of_means", data_dict["std-of-means"])
|
36 |
+
video_vae.register_buffer(
|
37 |
+
"mean_of_means", data_dict.get("mean-of-means", torch.zeros_like(data_dict["std-of-means"]))
|
38 |
+
)
|
39 |
+
|
40 |
+
return video_vae
|
41 |
+
|
42 |
+
@staticmethod
|
43 |
+
def from_config(config):
|
44 |
+
assert config["_class_name"] == "CausalVideoAutoencoder", "config must have _class_name=CausalVideoAutoencoder"
|
45 |
+
if isinstance(config["dims"], list):
|
46 |
+
config["dims"] = tuple(config["dims"])
|
47 |
+
|
48 |
+
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
|
49 |
+
|
50 |
+
double_z = config.get("double_z", True)
|
51 |
+
latent_log_var = config.get("latent_log_var", "per_channel" if double_z else "none")
|
52 |
+
use_quant_conv = config.get("use_quant_conv", True)
|
53 |
+
|
54 |
+
if use_quant_conv and latent_log_var == "uniform":
|
55 |
+
raise ValueError("uniform latent_log_var requires use_quant_conv=False")
|
56 |
+
|
57 |
+
encoder = Encoder(
|
58 |
+
dims=config["dims"],
|
59 |
+
in_channels=config.get("in_channels", 3),
|
60 |
+
out_channels=config["latent_channels"],
|
61 |
+
blocks=config["blocks"],
|
62 |
+
patch_size=config.get("patch_size", 1),
|
63 |
+
latent_log_var=latent_log_var,
|
64 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
65 |
+
)
|
66 |
+
|
67 |
+
decoder = Decoder(
|
68 |
+
dims=config["dims"],
|
69 |
+
in_channels=config["latent_channels"],
|
70 |
+
out_channels=config.get("out_channels", 3),
|
71 |
+
blocks=config["blocks"],
|
72 |
+
patch_size=config.get("patch_size", 1),
|
73 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
74 |
+
causal=config.get("causal_decoder", False),
|
75 |
+
)
|
76 |
+
|
77 |
+
dims = config["dims"]
|
78 |
+
return CausalVideoAutoencoder(
|
79 |
+
encoder=encoder,
|
80 |
+
decoder=decoder,
|
81 |
+
latent_channels=config["latent_channels"],
|
82 |
+
dims=dims,
|
83 |
+
use_quant_conv=use_quant_conv,
|
84 |
+
)
|
85 |
+
|
86 |
+
@property
|
87 |
+
def config(self):
|
88 |
+
return SimpleNamespace(
|
89 |
+
_class_name="CausalVideoAutoencoder",
|
90 |
+
dims=self.dims,
|
91 |
+
in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2,
|
92 |
+
out_channels=self.decoder.conv_out.out_channels // self.decoder.patch_size**2,
|
93 |
+
latent_channels=self.decoder.conv_in.in_channels,
|
94 |
+
blocks=self.encoder.blocks_desc,
|
95 |
+
scaling_factor=1.0,
|
96 |
+
norm_layer=self.encoder.norm_layer,
|
97 |
+
patch_size=self.encoder.patch_size,
|
98 |
+
latent_log_var=self.encoder.latent_log_var,
|
99 |
+
use_quant_conv=self.use_quant_conv,
|
100 |
+
causal_decoder=self.decoder.causal,
|
101 |
+
)
|
102 |
+
|
103 |
+
@property
|
104 |
+
def is_video_supported(self):
|
105 |
+
"""
|
106 |
+
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
|
107 |
+
"""
|
108 |
+
return self.dims != 2
|
109 |
+
|
110 |
+
@property
|
111 |
+
def spatial_downscale_factor(self):
|
112 |
+
return (
|
113 |
+
2 ** len([block for block in self.encoder.blocks_desc if block[0] in ["compress_space", "compress_all"]])
|
114 |
+
* self.encoder.patch_size
|
115 |
+
)
|
116 |
+
|
117 |
+
@property
|
118 |
+
def temporal_downscale_factor(self):
|
119 |
+
return 2 ** len([block for block in self.encoder.blocks_desc if block[0] in ["compress_time", "compress_all"]])
|
120 |
+
|
121 |
+
def to_json_string(self) -> str:
|
122 |
+
import json
|
123 |
+
|
124 |
+
return json.dumps(self.config.__dict__)
|
125 |
+
|
126 |
+
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
127 |
+
model_keys = set(name for name, _ in self.named_parameters())
|
128 |
+
|
129 |
+
key_mapping = {
|
130 |
+
".resnets.": ".res_blocks.",
|
131 |
+
"downsamplers.0": "downsample",
|
132 |
+
"upsamplers.0": "upsample",
|
133 |
+
}
|
134 |
+
|
135 |
+
converted_state_dict = {}
|
136 |
+
for key, value in state_dict.items():
|
137 |
+
for k, v in key_mapping.items():
|
138 |
+
key = key.replace(k, v)
|
139 |
+
|
140 |
+
if "norm" in key and key not in model_keys:
|
141 |
+
print(f"Removing key {key} from state_dict as it is not present in the model")
|
142 |
+
continue
|
143 |
+
|
144 |
+
converted_state_dict[key] = value
|
145 |
+
|
146 |
+
super().load_state_dict(converted_state_dict, strict=strict)
|
147 |
+
|
148 |
+
def last_layer(self):
|
149 |
+
if hasattr(self.decoder, "conv_out"):
|
150 |
+
if isinstance(self.decoder.conv_out, nn.Sequential):
|
151 |
+
last_layer = self.decoder.conv_out[-1]
|
152 |
+
else:
|
153 |
+
last_layer = self.decoder.conv_out
|
154 |
+
else:
|
155 |
+
last_layer = self.decoder.layers[-1]
|
156 |
+
return last_layer
|
157 |
+
|
158 |
+
|
159 |
+
class Encoder(nn.Module):
|
160 |
+
r"""
|
161 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
165 |
+
The number of dimensions to use in convolutions.
|
166 |
+
in_channels (`int`, *optional*, defaults to 3):
|
167 |
+
The number of input channels.
|
168 |
+
out_channels (`int`, *optional*, defaults to 3):
|
169 |
+
The number of output channels.
|
170 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
171 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
172 |
+
base_channels (`int`, *optional*, defaults to 128):
|
173 |
+
The number of output channels for the first convolutional layer.
|
174 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
175 |
+
The number of groups for normalization.
|
176 |
+
patch_size (`int`, *optional*, defaults to 1):
|
177 |
+
The patch size to use. Should be a power of 2.
|
178 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
179 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
180 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
181 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
187 |
+
in_channels: int = 3,
|
188 |
+
out_channels: int = 3,
|
189 |
+
blocks: List[Tuple[str, int]] = [("res_x", 1)],
|
190 |
+
base_channels: int = 128,
|
191 |
+
norm_num_groups: int = 32,
|
192 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
193 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
194 |
+
latent_log_var: str = "per_channel",
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
self.patch_size = patch_size
|
198 |
+
self.norm_layer = norm_layer
|
199 |
+
self.latent_channels = out_channels
|
200 |
+
self.latent_log_var = latent_log_var
|
201 |
+
self.blocks_desc = blocks
|
202 |
+
|
203 |
+
in_channels = in_channels * patch_size**2
|
204 |
+
output_channel = base_channels
|
205 |
+
|
206 |
+
self.conv_in = make_conv_nd(
|
207 |
+
dims=dims,
|
208 |
+
in_channels=in_channels,
|
209 |
+
out_channels=output_channel,
|
210 |
+
kernel_size=3,
|
211 |
+
stride=1,
|
212 |
+
padding=1,
|
213 |
+
causal=True,
|
214 |
+
)
|
215 |
+
|
216 |
+
self.down_blocks = nn.ModuleList([])
|
217 |
+
|
218 |
+
for block_name, num_layers in blocks:
|
219 |
+
input_channel = output_channel
|
220 |
+
|
221 |
+
if block_name == "res_x":
|
222 |
+
block = UNetMidBlock3D(
|
223 |
+
dims=dims,
|
224 |
+
in_channels=input_channel,
|
225 |
+
num_layers=num_layers,
|
226 |
+
resnet_eps=1e-6,
|
227 |
+
resnet_groups=norm_num_groups,
|
228 |
+
norm_layer=norm_layer,
|
229 |
+
)
|
230 |
+
elif block_name == "res_x_y":
|
231 |
+
output_channel = 2 * output_channel
|
232 |
+
block = ResnetBlock3D(
|
233 |
+
dims=dims,
|
234 |
+
in_channels=input_channel,
|
235 |
+
out_channels=output_channel,
|
236 |
+
eps=1e-6,
|
237 |
+
groups=norm_num_groups,
|
238 |
+
norm_layer=norm_layer,
|
239 |
+
)
|
240 |
+
elif block_name == "compress_time":
|
241 |
+
block = make_conv_nd(
|
242 |
+
dims=dims,
|
243 |
+
in_channels=input_channel,
|
244 |
+
out_channels=output_channel,
|
245 |
+
kernel_size=3,
|
246 |
+
stride=(2, 1, 1),
|
247 |
+
causal=True,
|
248 |
+
)
|
249 |
+
elif block_name == "compress_space":
|
250 |
+
block = make_conv_nd(
|
251 |
+
dims=dims,
|
252 |
+
in_channels=input_channel,
|
253 |
+
out_channels=output_channel,
|
254 |
+
kernel_size=3,
|
255 |
+
stride=(1, 2, 2),
|
256 |
+
causal=True,
|
257 |
+
)
|
258 |
+
elif block_name == "compress_all":
|
259 |
+
block = make_conv_nd(
|
260 |
+
dims=dims,
|
261 |
+
in_channels=input_channel,
|
262 |
+
out_channels=output_channel,
|
263 |
+
kernel_size=3,
|
264 |
+
stride=(2, 2, 2),
|
265 |
+
causal=True,
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
raise ValueError(f"unknown block: {block_name}")
|
269 |
+
|
270 |
+
self.down_blocks.append(block)
|
271 |
+
|
272 |
+
# out
|
273 |
+
if norm_layer == "group_norm":
|
274 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6)
|
275 |
+
elif norm_layer == "pixel_norm":
|
276 |
+
self.conv_norm_out = PixelNorm()
|
277 |
+
elif norm_layer == "layer_norm":
|
278 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
279 |
+
|
280 |
+
self.conv_act = nn.SiLU()
|
281 |
+
|
282 |
+
conv_out_channels = out_channels
|
283 |
+
if latent_log_var == "per_channel":
|
284 |
+
conv_out_channels *= 2
|
285 |
+
elif latent_log_var == "uniform":
|
286 |
+
conv_out_channels += 1
|
287 |
+
elif latent_log_var != "none":
|
288 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
289 |
+
self.conv_out = make_conv_nd(dims, output_channel, conv_out_channels, 3, padding=1, causal=True)
|
290 |
+
|
291 |
+
self.gradient_checkpointing = False
|
292 |
+
|
293 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
294 |
+
r"""The forward method of the `Encoder` class."""
|
295 |
+
|
296 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
297 |
+
sample = self.conv_in(sample)
|
298 |
+
|
299 |
+
checkpoint_fn = (
|
300 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
301 |
+
if self.gradient_checkpointing and self.training
|
302 |
+
else lambda x: x
|
303 |
+
)
|
304 |
+
|
305 |
+
for down_block in self.down_blocks:
|
306 |
+
sample = checkpoint_fn(down_block)(sample)
|
307 |
+
|
308 |
+
sample = self.conv_norm_out(sample)
|
309 |
+
sample = self.conv_act(sample)
|
310 |
+
sample = self.conv_out(sample)
|
311 |
+
|
312 |
+
if self.latent_log_var == "uniform":
|
313 |
+
last_channel = sample[:, -1:, ...]
|
314 |
+
num_dims = sample.dim()
|
315 |
+
|
316 |
+
if num_dims == 4:
|
317 |
+
# For shape (B, C, H, W)
|
318 |
+
repeated_last_channel = last_channel.repeat(1, sample.shape[1] - 2, 1, 1)
|
319 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
320 |
+
elif num_dims == 5:
|
321 |
+
# For shape (B, C, F, H, W)
|
322 |
+
repeated_last_channel = last_channel.repeat(1, sample.shape[1] - 2, 1, 1, 1)
|
323 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
324 |
+
else:
|
325 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
326 |
+
|
327 |
+
return sample
|
328 |
+
|
329 |
+
|
330 |
+
class Decoder(nn.Module):
|
331 |
+
r"""
|
332 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
333 |
+
|
334 |
+
Args:
|
335 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
336 |
+
The number of dimensions to use in convolutions.
|
337 |
+
in_channels (`int`, *optional*, defaults to 3):
|
338 |
+
The number of input channels.
|
339 |
+
out_channels (`int`, *optional*, defaults to 3):
|
340 |
+
The number of output channels.
|
341 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
342 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
343 |
+
base_channels (`int`, *optional*, defaults to 128):
|
344 |
+
The number of output channels for the first convolutional layer.
|
345 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
346 |
+
The number of groups for normalization.
|
347 |
+
patch_size (`int`, *optional*, defaults to 1):
|
348 |
+
The patch size to use. Should be a power of 2.
|
349 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
350 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
351 |
+
causal (`bool`, *optional*, defaults to `True`):
|
352 |
+
Whether to use causal convolutions or not.
|
353 |
+
"""
|
354 |
+
|
355 |
+
def __init__(
|
356 |
+
self,
|
357 |
+
dims,
|
358 |
+
in_channels: int = 3,
|
359 |
+
out_channels: int = 3,
|
360 |
+
blocks: List[Tuple[str, int]] = [("res_x", 1)],
|
361 |
+
base_channels: int = 128,
|
362 |
+
layers_per_block: int = 2,
|
363 |
+
norm_num_groups: int = 32,
|
364 |
+
patch_size: int = 1,
|
365 |
+
norm_layer: str = "group_norm",
|
366 |
+
causal: bool = True,
|
367 |
+
):
|
368 |
+
super().__init__()
|
369 |
+
self.patch_size = patch_size
|
370 |
+
self.layers_per_block = layers_per_block
|
371 |
+
out_channels = out_channels * patch_size**2
|
372 |
+
num_channel_doubles = len([x for x in blocks if x[0] == "res_x_y"])
|
373 |
+
output_channel = base_channels * 2**num_channel_doubles
|
374 |
+
self.causal = causal
|
375 |
+
|
376 |
+
self.conv_in = make_conv_nd(
|
377 |
+
dims,
|
378 |
+
in_channels,
|
379 |
+
output_channel,
|
380 |
+
kernel_size=3,
|
381 |
+
stride=1,
|
382 |
+
padding=1,
|
383 |
+
causal=True,
|
384 |
+
)
|
385 |
+
|
386 |
+
self.up_blocks = nn.ModuleList([])
|
387 |
+
|
388 |
+
for block_name, num_layers in list(reversed(blocks)):
|
389 |
+
input_channel = output_channel
|
390 |
+
|
391 |
+
if block_name == "res_x":
|
392 |
+
block = UNetMidBlock3D(
|
393 |
+
dims=dims,
|
394 |
+
in_channels=input_channel,
|
395 |
+
num_layers=num_layers,
|
396 |
+
resnet_eps=1e-6,
|
397 |
+
resnet_groups=norm_num_groups,
|
398 |
+
norm_layer=norm_layer,
|
399 |
+
)
|
400 |
+
elif block_name == "res_x_y":
|
401 |
+
output_channel = output_channel // 2
|
402 |
+
block = ResnetBlock3D(
|
403 |
+
dims=dims,
|
404 |
+
in_channels=input_channel,
|
405 |
+
out_channels=output_channel,
|
406 |
+
eps=1e-6,
|
407 |
+
groups=norm_num_groups,
|
408 |
+
norm_layer=norm_layer,
|
409 |
+
)
|
410 |
+
elif block_name == "compress_time":
|
411 |
+
block = DepthToSpaceUpsample(dims=dims, in_channels=input_channel, stride=(2, 1, 1))
|
412 |
+
elif block_name == "compress_space":
|
413 |
+
block = DepthToSpaceUpsample(dims=dims, in_channels=input_channel, stride=(1, 2, 2))
|
414 |
+
elif block_name == "compress_all":
|
415 |
+
block = DepthToSpaceUpsample(dims=dims, in_channels=input_channel, stride=(2, 2, 2))
|
416 |
+
else:
|
417 |
+
raise ValueError(f"unknown layer: {block_name}")
|
418 |
+
|
419 |
+
self.up_blocks.append(block)
|
420 |
+
|
421 |
+
if norm_layer == "group_norm":
|
422 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6)
|
423 |
+
elif norm_layer == "pixel_norm":
|
424 |
+
self.conv_norm_out = PixelNorm()
|
425 |
+
elif norm_layer == "layer_norm":
|
426 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
427 |
+
|
428 |
+
self.conv_act = nn.SiLU()
|
429 |
+
self.conv_out = make_conv_nd(dims, output_channel, out_channels, 3, padding=1, causal=True)
|
430 |
+
|
431 |
+
self.gradient_checkpointing = False
|
432 |
+
|
433 |
+
def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
434 |
+
r"""The forward method of the `Decoder` class."""
|
435 |
+
assert target_shape is not None, "target_shape must be provided"
|
436 |
+
|
437 |
+
sample = self.conv_in(sample, causal=self.causal)
|
438 |
+
|
439 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
440 |
+
|
441 |
+
checkpoint_fn = (
|
442 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
443 |
+
if self.gradient_checkpointing and self.training
|
444 |
+
else lambda x: x
|
445 |
+
)
|
446 |
+
|
447 |
+
sample = sample.to(upscale_dtype)
|
448 |
+
|
449 |
+
for up_block in self.up_blocks:
|
450 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
451 |
+
|
452 |
+
sample = self.conv_norm_out(sample)
|
453 |
+
sample = self.conv_act(sample)
|
454 |
+
sample = self.conv_out(sample, causal=self.causal)
|
455 |
+
|
456 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
457 |
+
|
458 |
+
return sample
|
459 |
+
|
460 |
+
|
461 |
+
class UNetMidBlock3D(nn.Module):
|
462 |
+
"""
|
463 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
in_channels (`int`): The number of input channels.
|
467 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
468 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
469 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
470 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
471 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
475 |
+
in_channels, height, width)`.
|
476 |
+
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(
|
480 |
+
self,
|
481 |
+
dims: Union[int, Tuple[int, int]],
|
482 |
+
in_channels: int,
|
483 |
+
dropout: float = 0.0,
|
484 |
+
num_layers: int = 1,
|
485 |
+
resnet_eps: float = 1e-6,
|
486 |
+
resnet_groups: int = 32,
|
487 |
+
norm_layer: str = "group_norm",
|
488 |
+
):
|
489 |
+
super().__init__()
|
490 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
491 |
+
|
492 |
+
self.res_blocks = nn.ModuleList(
|
493 |
+
[
|
494 |
+
ResnetBlock3D(
|
495 |
+
dims=dims,
|
496 |
+
in_channels=in_channels,
|
497 |
+
out_channels=in_channels,
|
498 |
+
eps=resnet_eps,
|
499 |
+
groups=resnet_groups,
|
500 |
+
dropout=dropout,
|
501 |
+
norm_layer=norm_layer,
|
502 |
+
)
|
503 |
+
for _ in range(num_layers)
|
504 |
+
]
|
505 |
+
)
|
506 |
+
|
507 |
+
def forward(self, hidden_states: torch.FloatTensor, causal: bool = True) -> torch.FloatTensor:
|
508 |
+
for resnet in self.res_blocks:
|
509 |
+
hidden_states = resnet(hidden_states, causal=causal)
|
510 |
+
|
511 |
+
return hidden_states
|
512 |
+
|
513 |
+
|
514 |
+
class DepthToSpaceUpsample(nn.Module):
|
515 |
+
def __init__(self, dims, in_channels, stride):
|
516 |
+
super().__init__()
|
517 |
+
self.stride = stride
|
518 |
+
self.out_channels = np.prod(stride) * in_channels
|
519 |
+
self.conv = make_conv_nd(
|
520 |
+
dims=dims,
|
521 |
+
in_channels=in_channels,
|
522 |
+
out_channels=self.out_channels,
|
523 |
+
kernel_size=3,
|
524 |
+
stride=1,
|
525 |
+
causal=True,
|
526 |
+
)
|
527 |
+
|
528 |
+
def forward(self, x, causal: bool = True):
|
529 |
+
x = self.conv(x, causal=causal)
|
530 |
+
x = rearrange(
|
531 |
+
x,
|
532 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
533 |
+
p1=self.stride[0],
|
534 |
+
p2=self.stride[1],
|
535 |
+
p3=self.stride[2],
|
536 |
+
)
|
537 |
+
if self.stride[0] == 2:
|
538 |
+
x = x[:, :, 1:, :, :]
|
539 |
+
return x
|
540 |
+
|
541 |
+
|
542 |
+
class LayerNorm(nn.Module):
|
543 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
544 |
+
super().__init__()
|
545 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
546 |
+
|
547 |
+
def forward(self, x):
|
548 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
549 |
+
x = self.norm(x)
|
550 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
551 |
+
return x
|
552 |
+
|
553 |
+
|
554 |
+
class ResnetBlock3D(nn.Module):
|
555 |
+
r"""
|
556 |
+
A Resnet block.
|
557 |
+
|
558 |
+
Parameters:
|
559 |
+
in_channels (`int`): The number of channels in the input.
|
560 |
+
out_channels (`int`, *optional*, default to be `None`):
|
561 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
562 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
563 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
564 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
565 |
+
"""
|
566 |
+
|
567 |
+
def __init__(
|
568 |
+
self,
|
569 |
+
dims: Union[int, Tuple[int, int]],
|
570 |
+
in_channels: int,
|
571 |
+
out_channels: Optional[int] = None,
|
572 |
+
conv_shortcut: bool = False,
|
573 |
+
dropout: float = 0.0,
|
574 |
+
groups: int = 32,
|
575 |
+
eps: float = 1e-6,
|
576 |
+
norm_layer: str = "group_norm",
|
577 |
+
):
|
578 |
+
super().__init__()
|
579 |
+
self.in_channels = in_channels
|
580 |
+
out_channels = in_channels if out_channels is None else out_channels
|
581 |
+
self.out_channels = out_channels
|
582 |
+
self.use_conv_shortcut = conv_shortcut
|
583 |
+
|
584 |
+
if norm_layer == "group_norm":
|
585 |
+
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
586 |
+
elif norm_layer == "pixel_norm":
|
587 |
+
self.norm1 = PixelNorm()
|
588 |
+
elif norm_layer == "layer_norm":
|
589 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
590 |
+
|
591 |
+
self.non_linearity = nn.SiLU()
|
592 |
+
|
593 |
+
self.conv1 = make_conv_nd(dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1, causal=True)
|
594 |
+
|
595 |
+
if norm_layer == "group_norm":
|
596 |
+
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
|
597 |
+
elif norm_layer == "pixel_norm":
|
598 |
+
self.norm2 = PixelNorm()
|
599 |
+
elif norm_layer == "layer_norm":
|
600 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
601 |
+
|
602 |
+
self.dropout = torch.nn.Dropout(dropout)
|
603 |
+
|
604 |
+
self.conv2 = make_conv_nd(dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1, causal=True)
|
605 |
+
|
606 |
+
self.conv_shortcut = (
|
607 |
+
make_linear_nd(dims=dims, in_channels=in_channels, out_channels=out_channels)
|
608 |
+
if in_channels != out_channels
|
609 |
+
else nn.Identity()
|
610 |
+
)
|
611 |
+
|
612 |
+
self.norm3 = (
|
613 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True) if in_channels != out_channels else nn.Identity()
|
614 |
+
)
|
615 |
+
|
616 |
+
def forward(
|
617 |
+
self,
|
618 |
+
input_tensor: torch.FloatTensor,
|
619 |
+
causal: bool = True,
|
620 |
+
) -> torch.FloatTensor:
|
621 |
+
hidden_states = input_tensor
|
622 |
+
|
623 |
+
hidden_states = self.norm1(hidden_states)
|
624 |
+
|
625 |
+
hidden_states = self.non_linearity(hidden_states)
|
626 |
+
|
627 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
628 |
+
|
629 |
+
hidden_states = self.norm2(hidden_states)
|
630 |
+
|
631 |
+
hidden_states = self.non_linearity(hidden_states)
|
632 |
+
|
633 |
+
hidden_states = self.dropout(hidden_states)
|
634 |
+
|
635 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
636 |
+
|
637 |
+
input_tensor = self.norm3(input_tensor)
|
638 |
+
|
639 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
640 |
+
|
641 |
+
output_tensor = input_tensor + hidden_states
|
642 |
+
|
643 |
+
return output_tensor
|
644 |
+
|
645 |
+
|
646 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
647 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
648 |
+
return x
|
649 |
+
if x.dim() == 4:
|
650 |
+
x = rearrange(x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw)
|
651 |
+
elif x.dim() == 5:
|
652 |
+
x = rearrange(x, "b c (f p) (h q) (w r) -> b (c p r q) f h w", p=patch_size_t, q=patch_size_hw, r=patch_size_hw)
|
653 |
+
else:
|
654 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
655 |
+
|
656 |
+
return x
|
657 |
+
|
658 |
+
|
659 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
660 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
661 |
+
return x
|
662 |
+
|
663 |
+
if x.dim() == 4:
|
664 |
+
x = rearrange(x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw)
|
665 |
+
elif x.dim() == 5:
|
666 |
+
x = rearrange(x, "b (c p r q) f h w -> b c (f p) (h q) (w r)", p=patch_size_t, q=patch_size_hw, r=patch_size_hw)
|
667 |
+
|
668 |
+
return x
|
669 |
+
|
670 |
+
|
671 |
+
def create_video_autoencoder_config(
|
672 |
+
latent_channels: int = 64,
|
673 |
+
):
|
674 |
+
config = {
|
675 |
+
"_class_name": "CausalVideoAutoencoder",
|
676 |
+
"dims": 3, # (2, 1), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d
|
677 |
+
"in_channels": 3, # Number of input color channels (e.g., RGB)
|
678 |
+
"out_channels": 3, # Number of output color channels
|
679 |
+
"latent_channels": latent_channels, # Number of channels in the latent space representation
|
680 |
+
"blocks": [
|
681 |
+
("res_x", 4),
|
682 |
+
("compress_space", 1),
|
683 |
+
("res_x_y", 1),
|
684 |
+
("res_x", 2),
|
685 |
+
("compress_all", 1),
|
686 |
+
("res_x", 3),
|
687 |
+
("compress_all", 1),
|
688 |
+
("res_x_y", 1),
|
689 |
+
("res_x", 2),
|
690 |
+
("compress_time", 1),
|
691 |
+
("res_x", 3),
|
692 |
+
("res_x", 3),
|
693 |
+
],
|
694 |
+
"patch_size": 4,
|
695 |
+
"latent_log_var": "uniform",
|
696 |
+
"use_quant_conv": False,
|
697 |
+
"norm_layer": "layer_norm",
|
698 |
+
"causal_decoder": True,
|
699 |
+
}
|
700 |
+
|
701 |
+
return config
|
702 |
+
|
703 |
+
|
704 |
+
def test_vae_patchify_unpatchify():
|
705 |
+
import torch
|
706 |
+
|
707 |
+
x = torch.randn(2, 3, 8, 64, 64)
|
708 |
+
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
|
709 |
+
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
|
710 |
+
assert torch.allclose(x, x_unpatched)
|
711 |
+
|
712 |
+
|
713 |
+
def demo_video_autoencoder_forward_backward():
|
714 |
+
# Configuration for the VideoAutoencoder
|
715 |
+
config = create_video_autoencoder_config()
|
716 |
+
|
717 |
+
# Instantiate the VideoAutoencoder with the specified configuration
|
718 |
+
video_autoencoder = CausalVideoAutoencoder.from_config(config)
|
719 |
+
|
720 |
+
print(video_autoencoder)
|
721 |
+
video_autoencoder.eval()
|
722 |
+
# Print the total number of parameters in the video autoencoder
|
723 |
+
total_params = sum(p.numel() for p in video_autoencoder.parameters())
|
724 |
+
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
|
725 |
+
|
726 |
+
# Create a mock input tensor simulating a batch of videos
|
727 |
+
# Shape: (batch_size, channels, depth, height, width)
|
728 |
+
# E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame
|
729 |
+
input_videos = torch.randn(2, 3, 17, 64, 64)
|
730 |
+
|
731 |
+
# Forward pass: encode and decode the input videos
|
732 |
+
latent = video_autoencoder.encode(input_videos).latent_dist.mode()
|
733 |
+
print(f"input shape={input_videos.shape}")
|
734 |
+
print(f"latent shape={latent.shape}")
|
735 |
+
|
736 |
+
reconstructed_videos = video_autoencoder.decode(latent, target_shape=input_videos.shape).sample
|
737 |
+
|
738 |
+
print(f"reconstructed shape={reconstructed_videos.shape}")
|
739 |
+
|
740 |
+
# Validate that single image gets treated the same way as first frame
|
741 |
+
input_image = input_videos[:, :, :1, :, :]
|
742 |
+
image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
|
743 |
+
reconstructed_image = video_autoencoder.decode(image_latent, target_shape=image_latent.shape).sample
|
744 |
+
|
745 |
+
first_frame_latent = latent[:, :, :1, :, :]
|
746 |
+
|
747 |
+
# assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
748 |
+
# assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
|
749 |
+
assert (image_latent == first_frame_latent).all()
|
750 |
+
assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
|
751 |
+
|
752 |
+
# Calculate the loss (e.g., mean squared error)
|
753 |
+
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
754 |
+
|
755 |
+
# Perform backward pass
|
756 |
+
loss.backward()
|
757 |
+
|
758 |
+
print(f"Demo completed with loss: {loss.item()}")
|
759 |
+
|
760 |
+
|
761 |
+
# Ensure to call the demo function to execute the forward and backward pass
|
762 |
+
if __name__ == "__main__":
|
763 |
+
demo_video_autoencoder_forward_backward()
|
xora/models/autoencoders/conv_nd_factory.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from xora.models.autoencoders.dual_conv3d import DualConv3d
|
6 |
+
from xora.models.autoencoders.causal_conv3d import CausalConv3d
|
7 |
+
|
8 |
+
|
9 |
+
def make_conv_nd(
|
10 |
+
dims: Union[int, Tuple[int, int]],
|
11 |
+
in_channels: int,
|
12 |
+
out_channels: int,
|
13 |
+
kernel_size: int,
|
14 |
+
stride=1,
|
15 |
+
padding=0,
|
16 |
+
dilation=1,
|
17 |
+
groups=1,
|
18 |
+
bias=True,
|
19 |
+
causal=False,
|
20 |
+
):
|
21 |
+
if dims == 2:
|
22 |
+
return torch.nn.Conv2d(
|
23 |
+
in_channels=in_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=padding,
|
28 |
+
dilation=dilation,
|
29 |
+
groups=groups,
|
30 |
+
bias=bias,
|
31 |
+
)
|
32 |
+
elif dims == 3:
|
33 |
+
if causal:
|
34 |
+
return CausalConv3d(
|
35 |
+
in_channels=in_channels,
|
36 |
+
out_channels=out_channels,
|
37 |
+
kernel_size=kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
bias=bias,
|
43 |
+
)
|
44 |
+
return torch.nn.Conv3d(
|
45 |
+
in_channels=in_channels,
|
46 |
+
out_channels=out_channels,
|
47 |
+
kernel_size=kernel_size,
|
48 |
+
stride=stride,
|
49 |
+
padding=padding,
|
50 |
+
dilation=dilation,
|
51 |
+
groups=groups,
|
52 |
+
bias=bias,
|
53 |
+
)
|
54 |
+
elif dims == (2, 1):
|
55 |
+
return DualConv3d(
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
kernel_size=kernel_size,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
bias=bias,
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
65 |
+
|
66 |
+
|
67 |
+
def make_linear_nd(
|
68 |
+
dims: int,
|
69 |
+
in_channels: int,
|
70 |
+
out_channels: int,
|
71 |
+
bias=True,
|
72 |
+
):
|
73 |
+
if dims == 2:
|
74 |
+
return torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias)
|
75 |
+
elif dims == 3 or dims == (2, 1):
|
76 |
+
return torch.nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias)
|
77 |
+
else:
|
78 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
xora/models/autoencoders/dual_conv3d.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class DualConv3d(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
kernel_size,
|
16 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
17 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
18 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
19 |
+
groups=1,
|
20 |
+
bias=True,
|
21 |
+
):
|
22 |
+
super(DualConv3d, self).__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.out_channels = out_channels
|
26 |
+
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
27 |
+
if isinstance(kernel_size, int):
|
28 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
29 |
+
if kernel_size == (1, 1, 1):
|
30 |
+
raise ValueError("kernel_size must be greater than 1. Use make_linear_nd instead.")
|
31 |
+
if isinstance(stride, int):
|
32 |
+
stride = (stride, stride, stride)
|
33 |
+
if isinstance(padding, int):
|
34 |
+
padding = (padding, padding, padding)
|
35 |
+
if isinstance(dilation, int):
|
36 |
+
dilation = (dilation, dilation, dilation)
|
37 |
+
|
38 |
+
# Set parameters for convolutions
|
39 |
+
self.groups = groups
|
40 |
+
self.bias = bias
|
41 |
+
|
42 |
+
# Define the size of the channels after the first convolution
|
43 |
+
intermediate_channels = out_channels if in_channels < out_channels else in_channels
|
44 |
+
|
45 |
+
# Define parameters for the first convolution
|
46 |
+
self.weight1 = nn.Parameter(
|
47 |
+
torch.Tensor(intermediate_channels, in_channels // groups, 1, kernel_size[1], kernel_size[2])
|
48 |
+
)
|
49 |
+
self.stride1 = (1, stride[1], stride[2])
|
50 |
+
self.padding1 = (0, padding[1], padding[2])
|
51 |
+
self.dilation1 = (1, dilation[1], dilation[2])
|
52 |
+
if bias:
|
53 |
+
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
54 |
+
else:
|
55 |
+
self.register_parameter("bias1", None)
|
56 |
+
|
57 |
+
# Define parameters for the second convolution
|
58 |
+
self.weight2 = nn.Parameter(torch.Tensor(out_channels, intermediate_channels // groups, kernel_size[0], 1, 1))
|
59 |
+
self.stride2 = (stride[0], 1, 1)
|
60 |
+
self.padding2 = (padding[0], 0, 0)
|
61 |
+
self.dilation2 = (dilation[0], 1, 1)
|
62 |
+
if bias:
|
63 |
+
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
64 |
+
else:
|
65 |
+
self.register_parameter("bias2", None)
|
66 |
+
|
67 |
+
# Initialize weights and biases
|
68 |
+
self.reset_parameters()
|
69 |
+
|
70 |
+
def reset_parameters(self):
|
71 |
+
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
72 |
+
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
73 |
+
if self.bias:
|
74 |
+
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
75 |
+
bound1 = 1 / math.sqrt(fan_in1)
|
76 |
+
nn.init.uniform_(self.bias1, -bound1, bound1)
|
77 |
+
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
78 |
+
bound2 = 1 / math.sqrt(fan_in2)
|
79 |
+
nn.init.uniform_(self.bias2, -bound2, bound2)
|
80 |
+
|
81 |
+
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
82 |
+
if use_conv3d:
|
83 |
+
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
84 |
+
else:
|
85 |
+
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
86 |
+
|
87 |
+
def forward_with_3d(self, x, skip_time_conv):
|
88 |
+
# First convolution
|
89 |
+
x = F.conv3d(x, self.weight1, self.bias1, self.stride1, self.padding1, self.dilation1, self.groups)
|
90 |
+
|
91 |
+
if skip_time_conv:
|
92 |
+
return x
|
93 |
+
|
94 |
+
# Second convolution
|
95 |
+
x = F.conv3d(x, self.weight2, self.bias2, self.stride2, self.padding2, self.dilation2, self.groups)
|
96 |
+
|
97 |
+
return x
|
98 |
+
|
99 |
+
def forward_with_2d(self, x, skip_time_conv):
|
100 |
+
b, c, d, h, w = x.shape
|
101 |
+
|
102 |
+
# First 2D convolution
|
103 |
+
x = rearrange(x, "b c d h w -> (b d) c h w")
|
104 |
+
# Squeeze the depth dimension out of weight1 since it's 1
|
105 |
+
weight1 = self.weight1.squeeze(2)
|
106 |
+
# Select stride, padding, and dilation for the 2D convolution
|
107 |
+
stride1 = (self.stride1[1], self.stride1[2])
|
108 |
+
padding1 = (self.padding1[1], self.padding1[2])
|
109 |
+
dilation1 = (self.dilation1[1], self.dilation1[2])
|
110 |
+
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
111 |
+
|
112 |
+
_, _, h, w = x.shape
|
113 |
+
|
114 |
+
if skip_time_conv:
|
115 |
+
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
116 |
+
return x
|
117 |
+
|
118 |
+
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
119 |
+
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
120 |
+
|
121 |
+
# Reshape weight2 to match the expected dimensions for conv1d
|
122 |
+
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
123 |
+
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
124 |
+
stride2 = self.stride2[0]
|
125 |
+
padding2 = self.padding2[0]
|
126 |
+
dilation2 = self.dilation2[0]
|
127 |
+
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
128 |
+
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
129 |
+
|
130 |
+
return x
|
131 |
+
|
132 |
+
@property
|
133 |
+
def weight(self):
|
134 |
+
return self.weight2
|
135 |
+
|
136 |
+
|
137 |
+
def test_dual_conv3d_consistency():
|
138 |
+
# Initialize parameters
|
139 |
+
in_channels = 3
|
140 |
+
out_channels = 5
|
141 |
+
kernel_size = (3, 3, 3)
|
142 |
+
stride = (2, 2, 2)
|
143 |
+
padding = (1, 1, 1)
|
144 |
+
|
145 |
+
# Create an instance of the DualConv3d class
|
146 |
+
dual_conv3d = DualConv3d(
|
147 |
+
in_channels=in_channels,
|
148 |
+
out_channels=out_channels,
|
149 |
+
kernel_size=kernel_size,
|
150 |
+
stride=stride,
|
151 |
+
padding=padding,
|
152 |
+
bias=True,
|
153 |
+
)
|
154 |
+
|
155 |
+
# Example input tensor
|
156 |
+
test_input = torch.randn(1, 3, 10, 10, 10)
|
157 |
+
|
158 |
+
# Perform forward passes with both 3D and 2D settings
|
159 |
+
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
160 |
+
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
161 |
+
|
162 |
+
# Assert that the outputs from both methods are sufficiently close
|
163 |
+
assert torch.allclose(
|
164 |
+
output_conv3d, output_2d, atol=1e-6
|
165 |
+
), "Outputs are not consistent between 3D and 2D convolutions."
|
xora/models/autoencoders/pixel_norm.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class PixelNorm(nn.Module):
|
6 |
+
def __init__(self, dim=1, eps=1e-8):
|
7 |
+
super(PixelNorm, self).__init__()
|
8 |
+
self.dim = dim
|
9 |
+
self.eps = eps
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
|
xora/models/autoencoders/vae.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
import torch.nn as nn
|
6 |
+
from diffusers import ConfigMixin, ModelMixin
|
7 |
+
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
8 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
9 |
+
from xora.models.autoencoders.conv_nd_factory import make_conv_nd
|
10 |
+
|
11 |
+
|
12 |
+
class AutoencoderKLWrapper(ModelMixin, ConfigMixin):
|
13 |
+
"""Variational Autoencoder (VAE) model with KL loss.
|
14 |
+
|
15 |
+
VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling.
|
16 |
+
This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
encoder (`nn.Module`):
|
20 |
+
Encoder module.
|
21 |
+
decoder (`nn.Module`):
|
22 |
+
Decoder module.
|
23 |
+
latent_channels (`int`, *optional*, defaults to 4):
|
24 |
+
Number of latent channels.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
encoder: nn.Module,
|
30 |
+
decoder: nn.Module,
|
31 |
+
latent_channels: int = 4,
|
32 |
+
dims: int = 2,
|
33 |
+
sample_size=512,
|
34 |
+
use_quant_conv: bool = True,
|
35 |
+
):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
# pass init params to Encoder
|
39 |
+
self.encoder = encoder
|
40 |
+
self.use_quant_conv = use_quant_conv
|
41 |
+
|
42 |
+
# pass init params to Decoder
|
43 |
+
quant_dims = 2 if dims == 2 else 3
|
44 |
+
self.decoder = decoder
|
45 |
+
if use_quant_conv:
|
46 |
+
self.quant_conv = make_conv_nd(quant_dims, 2 * latent_channels, 2 * latent_channels, 1)
|
47 |
+
self.post_quant_conv = make_conv_nd(quant_dims, latent_channels, latent_channels, 1)
|
48 |
+
else:
|
49 |
+
self.quant_conv = nn.Identity()
|
50 |
+
self.post_quant_conv = nn.Identity()
|
51 |
+
self.use_z_tiling = False
|
52 |
+
self.use_hw_tiling = False
|
53 |
+
self.dims = dims
|
54 |
+
self.z_sample_size = 1
|
55 |
+
|
56 |
+
# only relevant if vae tiling is enabled
|
57 |
+
self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25)
|
58 |
+
|
59 |
+
def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25):
|
60 |
+
self.tile_sample_min_size = sample_size
|
61 |
+
num_blocks = len(self.encoder.down_blocks)
|
62 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (num_blocks - 1)))
|
63 |
+
self.tile_overlap_factor = overlap_factor
|
64 |
+
|
65 |
+
def enable_z_tiling(self, z_sample_size: int = 8):
|
66 |
+
r"""
|
67 |
+
Enable tiling during VAE decoding.
|
68 |
+
|
69 |
+
When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several
|
70 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
71 |
+
"""
|
72 |
+
self.use_z_tiling = z_sample_size > 1
|
73 |
+
self.z_sample_size = z_sample_size
|
74 |
+
assert (
|
75 |
+
z_sample_size % 8 == 0 or z_sample_size == 1
|
76 |
+
), f"z_sample_size must be a multiple of 8 or 1. Got {z_sample_size}."
|
77 |
+
|
78 |
+
def disable_z_tiling(self):
|
79 |
+
r"""
|
80 |
+
Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing
|
81 |
+
decoding in one step.
|
82 |
+
"""
|
83 |
+
self.use_z_tiling = False
|
84 |
+
|
85 |
+
def enable_hw_tiling(self):
|
86 |
+
r"""
|
87 |
+
Enable tiling during VAE decoding along the height and width dimension.
|
88 |
+
"""
|
89 |
+
self.use_hw_tiling = True
|
90 |
+
|
91 |
+
def disable_hw_tiling(self):
|
92 |
+
r"""
|
93 |
+
Disable tiling during VAE decoding along the height and width dimension.
|
94 |
+
"""
|
95 |
+
self.use_hw_tiling = False
|
96 |
+
|
97 |
+
def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True):
|
98 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
99 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
100 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
101 |
+
|
102 |
+
# Split the image into 512x512 tiles and encode them separately.
|
103 |
+
rows = []
|
104 |
+
for i in range(0, x.shape[3], overlap_size):
|
105 |
+
row = []
|
106 |
+
for j in range(0, x.shape[4], overlap_size):
|
107 |
+
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
108 |
+
tile = self.encoder(tile)
|
109 |
+
tile = self.quant_conv(tile)
|
110 |
+
row.append(tile)
|
111 |
+
rows.append(row)
|
112 |
+
result_rows = []
|
113 |
+
for i, row in enumerate(rows):
|
114 |
+
result_row = []
|
115 |
+
for j, tile in enumerate(row):
|
116 |
+
# blend the above tile and the left tile
|
117 |
+
# to the current tile and add the current tile to the result row
|
118 |
+
if i > 0:
|
119 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
120 |
+
if j > 0:
|
121 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
122 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
123 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
124 |
+
|
125 |
+
moments = torch.cat(result_rows, dim=3)
|
126 |
+
return moments
|
127 |
+
|
128 |
+
def blend_z(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
129 |
+
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
130 |
+
for z in range(blend_extent):
|
131 |
+
b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * (1 - z / blend_extent) + b[:, :, z, :, :] * (
|
132 |
+
z / blend_extent
|
133 |
+
)
|
134 |
+
return b
|
135 |
+
|
136 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
137 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
138 |
+
for y in range(blend_extent):
|
139 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
140 |
+
y / blend_extent
|
141 |
+
)
|
142 |
+
return b
|
143 |
+
|
144 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
145 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
146 |
+
for x in range(blend_extent):
|
147 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
148 |
+
x / blend_extent
|
149 |
+
)
|
150 |
+
return b
|
151 |
+
|
152 |
+
def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape):
|
153 |
+
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
154 |
+
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
155 |
+
row_limit = self.tile_sample_min_size - blend_extent
|
156 |
+
tile_target_shape = (*target_shape[:3], self.tile_sample_min_size, self.tile_sample_min_size)
|
157 |
+
# Split z into overlapping 64x64 tiles and decode them separately.
|
158 |
+
# The tiles have an overlap to avoid seams between tiles.
|
159 |
+
rows = []
|
160 |
+
for i in range(0, z.shape[3], overlap_size):
|
161 |
+
row = []
|
162 |
+
for j in range(0, z.shape[4], overlap_size):
|
163 |
+
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
|
164 |
+
tile = self.post_quant_conv(tile)
|
165 |
+
decoded = self.decoder(tile, target_shape=tile_target_shape)
|
166 |
+
row.append(decoded)
|
167 |
+
rows.append(row)
|
168 |
+
result_rows = []
|
169 |
+
for i, row in enumerate(rows):
|
170 |
+
result_row = []
|
171 |
+
for j, tile in enumerate(row):
|
172 |
+
# blend the above tile and the left tile
|
173 |
+
# to the current tile and add the current tile to the result row
|
174 |
+
if i > 0:
|
175 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
176 |
+
if j > 0:
|
177 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
178 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
179 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
180 |
+
|
181 |
+
dec = torch.cat(result_rows, dim=3)
|
182 |
+
return dec
|
183 |
+
|
184 |
+
def encode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
185 |
+
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1:
|
186 |
+
num_splits = z.shape[2] // self.z_sample_size
|
187 |
+
sizes = [self.z_sample_size] * num_splits
|
188 |
+
sizes = sizes + [z.shape[2] - sum(sizes)] if z.shape[2] - sum(sizes) > 0 else sizes
|
189 |
+
tiles = z.split(sizes, dim=2)
|
190 |
+
moments_tiles = [
|
191 |
+
self._hw_tiled_encode(z_tile, return_dict) if self.use_hw_tiling else self._encode(z_tile)
|
192 |
+
for z_tile in tiles
|
193 |
+
]
|
194 |
+
moments = torch.cat(moments_tiles, dim=2)
|
195 |
+
|
196 |
+
else:
|
197 |
+
moments = self._hw_tiled_encode(z, return_dict) if self.use_hw_tiling else self._encode(z)
|
198 |
+
|
199 |
+
posterior = DiagonalGaussianDistribution(moments)
|
200 |
+
if not return_dict:
|
201 |
+
return (posterior,)
|
202 |
+
|
203 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
204 |
+
|
205 |
+
def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput:
|
206 |
+
h = self.encoder(x)
|
207 |
+
moments = self.quant_conv(h)
|
208 |
+
return moments
|
209 |
+
|
210 |
+
def _decode(self, z: torch.FloatTensor, target_shape=None) -> Union[DecoderOutput, torch.FloatTensor]:
|
211 |
+
z = self.post_quant_conv(z)
|
212 |
+
dec = self.decoder(z, target_shape=target_shape)
|
213 |
+
return dec
|
214 |
+
|
215 |
+
def decode(
|
216 |
+
self, z: torch.FloatTensor, return_dict: bool = True, target_shape=None
|
217 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
218 |
+
assert target_shape is not None, "target_shape must be provided for decoding"
|
219 |
+
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1:
|
220 |
+
reduction_factor = int(
|
221 |
+
self.encoder.patch_size_t
|
222 |
+
* 2 ** (len(self.encoder.down_blocks) - 1 - math.sqrt(self.encoder.patch_size))
|
223 |
+
)
|
224 |
+
split_size = self.z_sample_size // reduction_factor
|
225 |
+
num_splits = z.shape[2] // split_size
|
226 |
+
|
227 |
+
# copy target shape, and divide frame dimension (=2) by the context size
|
228 |
+
target_shape_split = list(target_shape)
|
229 |
+
target_shape_split[2] = target_shape[2] // num_splits
|
230 |
+
|
231 |
+
decoded_tiles = [
|
232 |
+
(
|
233 |
+
self._hw_tiled_decode(z_tile, target_shape_split)
|
234 |
+
if self.use_hw_tiling
|
235 |
+
else self._decode(z_tile, target_shape=target_shape_split)
|
236 |
+
)
|
237 |
+
for z_tile in torch.tensor_split(z, num_splits, dim=2)
|
238 |
+
]
|
239 |
+
decoded = torch.cat(decoded_tiles, dim=2)
|
240 |
+
else:
|
241 |
+
decoded = (
|
242 |
+
self._hw_tiled_decode(z, target_shape)
|
243 |
+
if self.use_hw_tiling
|
244 |
+
else self._decode(z, target_shape=target_shape)
|
245 |
+
)
|
246 |
+
|
247 |
+
if not return_dict:
|
248 |
+
return (decoded,)
|
249 |
+
|
250 |
+
return DecoderOutput(sample=decoded)
|
251 |
+
|
252 |
+
def forward(
|
253 |
+
self,
|
254 |
+
sample: torch.FloatTensor,
|
255 |
+
sample_posterior: bool = False,
|
256 |
+
return_dict: bool = True,
|
257 |
+
generator: Optional[torch.Generator] = None,
|
258 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
259 |
+
r"""
|
260 |
+
Args:
|
261 |
+
sample (`torch.FloatTensor`): Input sample.
|
262 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
263 |
+
Whether to sample from the posterior.
|
264 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
265 |
+
Whether to return a [`DecoderOutput`] instead of a plain tuple.
|
266 |
+
generator (`torch.Generator`, *optional*):
|
267 |
+
Generator used to sample from the posterior.
|
268 |
+
"""
|
269 |
+
x = sample
|
270 |
+
posterior = self.encode(x).latent_dist
|
271 |
+
if sample_posterior:
|
272 |
+
z = posterior.sample(generator=generator)
|
273 |
+
else:
|
274 |
+
z = posterior.mode()
|
275 |
+
dec = self.decode(z, target_shape=sample.shape).sample
|
276 |
+
|
277 |
+
if not return_dict:
|
278 |
+
return (dec,)
|
279 |
+
|
280 |
+
return DecoderOutput(sample=dec)
|
xora/models/autoencoders/vae_encode.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from diffusers import AutoencoderKL
|
4 |
+
from einops import rearrange
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import functional
|
7 |
+
|
8 |
+
|
9 |
+
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
10 |
+
|
11 |
+
class Downsample3D(nn.Module):
|
12 |
+
def __init__(self, dims, in_channels: int, out_channels: int, kernel_size: int = 3, padding: int = 1):
|
13 |
+
super().__init__()
|
14 |
+
stride: int = 2
|
15 |
+
self.padding = padding
|
16 |
+
self.in_channels = in_channels
|
17 |
+
self.dims = dims
|
18 |
+
self.conv = make_conv_nd(
|
19 |
+
dims=dims,
|
20 |
+
in_channels=in_channels,
|
21 |
+
out_channels=out_channels,
|
22 |
+
kernel_size=kernel_size,
|
23 |
+
stride=stride,
|
24 |
+
padding=padding,
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, x, downsample_in_time=True):
|
28 |
+
conv = self.conv
|
29 |
+
if self.padding == 0:
|
30 |
+
if self.dims == 2:
|
31 |
+
padding = (0, 1, 0, 1)
|
32 |
+
else:
|
33 |
+
padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0)
|
34 |
+
|
35 |
+
x = functional.pad(x, padding, mode="constant", value=0)
|
36 |
+
|
37 |
+
if self.dims == (2, 1) and not downsample_in_time:
|
38 |
+
return conv(x, skip_time_conv=True)
|
39 |
+
|
40 |
+
return conv(x)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def vae_encode(media_items: Tensor, vae: AutoencoderKL, split_size: int = 1, vae_per_channel_normalize=False) -> Tensor:
|
45 |
+
"""
|
46 |
+
Encodes media items (images or videos) into latent representations using a specified VAE model.
|
47 |
+
The function supports processing batches of images or video frames and can handle the processing
|
48 |
+
in smaller sub-batches if needed.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
media_items (Tensor): A torch Tensor containing the media items to encode. The expected
|
52 |
+
shape is (batch_size, channels, height, width) for images or (batch_size, channels,
|
53 |
+
frames, height, width) for videos.
|
54 |
+
vae (AutoencoderKL): An instance of the `AutoencoderKL` class from the `diffusers` library,
|
55 |
+
pre-configured and loaded with the appropriate model weights.
|
56 |
+
split_size (int, optional): The number of sub-batches to split the input batch into for encoding.
|
57 |
+
If set to more than 1, the input media items are processed in smaller batches according to
|
58 |
+
this value. Defaults to 1, which processes all items in a single batch.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Tensor: A torch Tensor of the encoded latent representations. The shape of the tensor is adjusted
|
62 |
+
to match the input shape, scaled by the model's configuration.
|
63 |
+
|
64 |
+
Examples:
|
65 |
+
>>> import torch
|
66 |
+
>>> from diffusers import AutoencoderKL
|
67 |
+
>>> vae = AutoencoderKL.from_pretrained('your-model-name')
|
68 |
+
>>> images = torch.rand(10, 3, 8 256, 256) # Example tensor with 10 videos of 8 frames.
|
69 |
+
>>> latents = vae_encode(images, vae)
|
70 |
+
>>> print(latents.shape) # Output shape will depend on the model's latent configuration.
|
71 |
+
|
72 |
+
Note:
|
73 |
+
In case of a video, the function encodes the media item frame-by frame.
|
74 |
+
"""
|
75 |
+
is_video_shaped = media_items.dim() == 5
|
76 |
+
batch_size, channels = media_items.shape[0:2]
|
77 |
+
|
78 |
+
if channels != 3:
|
79 |
+
raise ValueError(f"Expects tensors with 3 channels, got {channels}.")
|
80 |
+
|
81 |
+
if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
|
82 |
+
media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
|
83 |
+
if split_size > 1:
|
84 |
+
if len(media_items) % split_size != 0:
|
85 |
+
raise ValueError("Error: The batch size must be divisible by 'train.vae_bs_split")
|
86 |
+
encode_bs = len(media_items) // split_size
|
87 |
+
# latents = [vae.encode(image_batch).latent_dist.sample() for image_batch in media_items.split(encode_bs)]
|
88 |
+
latents = []
|
89 |
+
for image_batch in media_items.split(encode_bs):
|
90 |
+
latents.append(vae.encode(image_batch).latent_dist.sample())
|
91 |
+
latents = torch.cat(latents, dim=0)
|
92 |
+
else:
|
93 |
+
latents = vae.encode(media_items).latent_dist.sample()
|
94 |
+
|
95 |
+
latents = normalize_latents(latents, vae, vae_per_channel_normalize)
|
96 |
+
if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
|
97 |
+
latents = rearrange(latents, "(b n) c h w -> b c n h w", b=batch_size)
|
98 |
+
return latents
|
99 |
+
|
100 |
+
|
101 |
+
def vae_decode(
|
102 |
+
latents: Tensor, vae: AutoencoderKL, is_video: bool = True, split_size: int = 1, vae_per_channel_normalize=False
|
103 |
+
) -> Tensor:
|
104 |
+
is_video_shaped = latents.dim() == 5
|
105 |
+
batch_size = latents.shape[0]
|
106 |
+
|
107 |
+
if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
|
108 |
+
latents = rearrange(latents, "b c n h w -> (b n) c h w")
|
109 |
+
if split_size > 1:
|
110 |
+
if len(latents) % split_size != 0:
|
111 |
+
raise ValueError("Error: The batch size must be divisible by 'train.vae_bs_split")
|
112 |
+
encode_bs = len(latents) // split_size
|
113 |
+
image_batch = [
|
114 |
+
_run_decoder(latent_batch, vae, is_video, vae_per_channel_normalize)
|
115 |
+
for latent_batch in latents.split(encode_bs)
|
116 |
+
]
|
117 |
+
images = torch.cat(image_batch, dim=0)
|
118 |
+
else:
|
119 |
+
images = _run_decoder(latents, vae, is_video, vae_per_channel_normalize)
|
120 |
+
|
121 |
+
if is_video_shaped and not isinstance(vae, (CausalVideoAutoencoder)):
|
122 |
+
images = rearrange(images, "(b n) c h w -> b c n h w", b=batch_size)
|
123 |
+
return images
|
124 |
+
|
125 |
+
|
126 |
+
def _run_decoder(latents: Tensor, vae: AutoencoderKL, is_video: bool, vae_per_channel_normalize=False) -> Tensor:
|
127 |
+
if isinstance(vae, (CausalVideoAutoencoder)):
|
128 |
+
*_, fl, hl, wl = latents.shape
|
129 |
+
temporal_scale, spatial_scale, _ = get_vae_size_scale_factor(vae)
|
130 |
+
latents = latents.to(vae.dtype)
|
131 |
+
image = vae.decode(
|
132 |
+
un_normalize_latents(latents, vae, vae_per_channel_normalize),
|
133 |
+
return_dict=False,
|
134 |
+
target_shape=(1, 3, fl * temporal_scale if is_video else 1, hl * spatial_scale, wl * spatial_scale),
|
135 |
+
)[0]
|
136 |
+
else:
|
137 |
+
image = vae.decode(
|
138 |
+
un_normalize_latents(latents, vae, vae_per_channel_normalize),
|
139 |
+
return_dict=False,
|
140 |
+
)[0]
|
141 |
+
return image
|
142 |
+
|
143 |
+
|
144 |
+
def get_vae_size_scale_factor(vae: AutoencoderKL) -> float:
|
145 |
+
if isinstance(vae, CausalVideoAutoencoder):
|
146 |
+
spatial = vae.spatial_downscale_factor
|
147 |
+
temporal = vae.temporal_downscale_factor
|
148 |
+
else:
|
149 |
+
down_blocks = len([block for block in vae.encoder.down_blocks if isinstance(block.downsample, Downsample3D)])
|
150 |
+
spatial = vae.config.patch_size * 2**down_blocks
|
151 |
+
temporal = vae.config.patch_size_t * 2 ** down_blocks if isinstance(vae) else 1
|
152 |
+
|
153 |
+
return (temporal, spatial, spatial)
|
154 |
+
|
155 |
+
|
156 |
+
def normalize_latents(latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False) -> Tensor:
|
157 |
+
return (
|
158 |
+
(latents - vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1))
|
159 |
+
/ vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
|
160 |
+
if vae_per_channel_normalize
|
161 |
+
else latents * vae.config.scaling_factor
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
def un_normalize_latents(latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False) -> Tensor:
|
166 |
+
return (
|
167 |
+
latents * vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
|
168 |
+
+ vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
|
169 |
+
if vae_per_channel_normalize
|
170 |
+
else latents / vae.config.scaling_factor
|
171 |
+
)
|
xora/models/transformers/__init__.py
ADDED
File without changes
|
xora/models/transformers/attention.py
ADDED
@@ -0,0 +1,1064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from importlib import import_module
|
3 |
+
from typing import Any, Dict, Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
8 |
+
from diffusers.models.attention import _chunked_feed_forward
|
9 |
+
from diffusers.models.attention_processor import (
|
10 |
+
LoRAAttnAddedKVProcessor,
|
11 |
+
LoRAAttnProcessor,
|
12 |
+
LoRAAttnProcessor2_0,
|
13 |
+
LoRAXFormersAttnProcessor,
|
14 |
+
SpatialNorm,
|
15 |
+
)
|
16 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
17 |
+
from diffusers.models.normalization import RMSNorm
|
18 |
+
from diffusers.utils import deprecate, logging
|
19 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
20 |
+
from einops import rearrange
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
# code adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
@maybe_allow_in_graph
|
29 |
+
class BasicTransformerBlock(nn.Module):
|
30 |
+
r"""
|
31 |
+
A basic Transformer block.
|
32 |
+
|
33 |
+
Parameters:
|
34 |
+
dim (`int`): The number of channels in the input and output.
|
35 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
36 |
+
attention_head_dim (`int`): The number of channels in each head.
|
37 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
38 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
39 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
40 |
+
num_embeds_ada_norm (:
|
41 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
42 |
+
attention_bias (:
|
43 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
44 |
+
only_cross_attention (`bool`, *optional*):
|
45 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
46 |
+
double_self_attention (`bool`, *optional*):
|
47 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
48 |
+
upcast_attention (`bool`, *optional*):
|
49 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
50 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
51 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
52 |
+
qk_norm (`str`, *optional*, defaults to None):
|
53 |
+
Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
|
54 |
+
adaptive_norm (`str`, *optional*, defaults to `"single_scale_shift"`):
|
55 |
+
The type of adaptive norm to use. Can be `"single_scale_shift"`, `"single_scale"` or "none".
|
56 |
+
standardization_norm (`str`, *optional*, defaults to `"layer_norm"`):
|
57 |
+
The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`.
|
58 |
+
final_dropout (`bool` *optional*, defaults to False):
|
59 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
60 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
61 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
62 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
63 |
+
The type of positional embeddings to apply to.
|
64 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
65 |
+
The maximum number of positional embeddings to apply.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
dim: int,
|
71 |
+
num_attention_heads: int,
|
72 |
+
attention_head_dim: int,
|
73 |
+
dropout=0.0,
|
74 |
+
cross_attention_dim: Optional[int] = None,
|
75 |
+
activation_fn: str = "geglu",
|
76 |
+
num_embeds_ada_norm: Optional[int] = None, # pylint: disable=unused-argument
|
77 |
+
attention_bias: bool = False,
|
78 |
+
only_cross_attention: bool = False,
|
79 |
+
double_self_attention: bool = False,
|
80 |
+
upcast_attention: bool = False,
|
81 |
+
norm_elementwise_affine: bool = True,
|
82 |
+
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift', 'single_scale' or 'none'
|
83 |
+
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
|
84 |
+
norm_eps: float = 1e-5,
|
85 |
+
qk_norm: Optional[str] = None,
|
86 |
+
final_dropout: bool = False,
|
87 |
+
attention_type: str = "default", # pylint: disable=unused-argument
|
88 |
+
ff_inner_dim: Optional[int] = None,
|
89 |
+
ff_bias: bool = True,
|
90 |
+
attention_out_bias: bool = True,
|
91 |
+
use_tpu_flash_attention: bool = False,
|
92 |
+
use_rope: bool = False,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
self.only_cross_attention = only_cross_attention
|
96 |
+
self.use_tpu_flash_attention = use_tpu_flash_attention
|
97 |
+
self.adaptive_norm = adaptive_norm
|
98 |
+
|
99 |
+
assert standardization_norm in ["layer_norm", "rms_norm"]
|
100 |
+
assert adaptive_norm in ["single_scale_shift", "single_scale", "none"]
|
101 |
+
|
102 |
+
make_norm_layer = nn.LayerNorm if standardization_norm == "layer_norm" else RMSNorm
|
103 |
+
|
104 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
105 |
+
# 1. Self-Attn
|
106 |
+
self.norm1 = make_norm_layer(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
107 |
+
|
108 |
+
self.attn1 = Attention(
|
109 |
+
query_dim=dim,
|
110 |
+
heads=num_attention_heads,
|
111 |
+
dim_head=attention_head_dim,
|
112 |
+
dropout=dropout,
|
113 |
+
bias=attention_bias,
|
114 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
115 |
+
upcast_attention=upcast_attention,
|
116 |
+
out_bias=attention_out_bias,
|
117 |
+
use_tpu_flash_attention=use_tpu_flash_attention,
|
118 |
+
qk_norm=qk_norm,
|
119 |
+
use_rope=use_rope,
|
120 |
+
)
|
121 |
+
|
122 |
+
# 2. Cross-Attn
|
123 |
+
if cross_attention_dim is not None or double_self_attention:
|
124 |
+
self.attn2 = Attention(
|
125 |
+
query_dim=dim,
|
126 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
127 |
+
heads=num_attention_heads,
|
128 |
+
dim_head=attention_head_dim,
|
129 |
+
dropout=dropout,
|
130 |
+
bias=attention_bias,
|
131 |
+
upcast_attention=upcast_attention,
|
132 |
+
out_bias=attention_out_bias,
|
133 |
+
use_tpu_flash_attention=use_tpu_flash_attention,
|
134 |
+
qk_norm=qk_norm,
|
135 |
+
use_rope=use_rope,
|
136 |
+
) # is self-attn if encoder_hidden_states is none
|
137 |
+
|
138 |
+
if adaptive_norm == "none":
|
139 |
+
self.attn2_norm = make_norm_layer(dim, norm_eps, norm_elementwise_affine)
|
140 |
+
else:
|
141 |
+
self.attn2 = None
|
142 |
+
self.attn2_norm = None
|
143 |
+
|
144 |
+
self.norm2 = make_norm_layer(dim, norm_eps, norm_elementwise_affine)
|
145 |
+
|
146 |
+
# 3. Feed-forward
|
147 |
+
self.ff = FeedForward(
|
148 |
+
dim,
|
149 |
+
dropout=dropout,
|
150 |
+
activation_fn=activation_fn,
|
151 |
+
final_dropout=final_dropout,
|
152 |
+
inner_dim=ff_inner_dim,
|
153 |
+
bias=ff_bias,
|
154 |
+
)
|
155 |
+
|
156 |
+
# 5. Scale-shift for PixArt-Alpha.
|
157 |
+
if adaptive_norm != "none":
|
158 |
+
num_ada_params = 4 if adaptive_norm == "single_scale" else 6
|
159 |
+
self.scale_shift_table = nn.Parameter(torch.randn(num_ada_params, dim) / dim**0.5)
|
160 |
+
|
161 |
+
# let chunk size default to None
|
162 |
+
self._chunk_size = None
|
163 |
+
self._chunk_dim = 0
|
164 |
+
|
165 |
+
|
166 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
167 |
+
# Sets chunk feed-forward
|
168 |
+
self._chunk_size = chunk_size
|
169 |
+
self._chunk_dim = dim
|
170 |
+
|
171 |
+
def forward(
|
172 |
+
self,
|
173 |
+
hidden_states: torch.FloatTensor,
|
174 |
+
freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
175 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
176 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
177 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
178 |
+
timestep: Optional[torch.LongTensor] = None,
|
179 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
180 |
+
class_labels: Optional[torch.LongTensor] = None,
|
181 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
182 |
+
) -> torch.FloatTensor:
|
183 |
+
if cross_attention_kwargs is not None:
|
184 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
185 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
|
186 |
+
|
187 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
188 |
+
# 0. Self-Attention
|
189 |
+
batch_size = hidden_states.shape[0]
|
190 |
+
|
191 |
+
norm_hidden_states = self.norm1(hidden_states)
|
192 |
+
|
193 |
+
# Apply ada_norm_single
|
194 |
+
if self.adaptive_norm in ["single_scale_shift", "single_scale"]:
|
195 |
+
assert timestep.ndim == 3 # [batch, 1 or num_tokens, embedding_dim]
|
196 |
+
num_ada_params = self.scale_shift_table.shape[0]
|
197 |
+
ada_values = self.scale_shift_table[None, None] + timestep.reshape(
|
198 |
+
batch_size, timestep.shape[1], num_ada_params, -1
|
199 |
+
)
|
200 |
+
if self.adaptive_norm == "single_scale_shift":
|
201 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
|
202 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
203 |
+
else:
|
204 |
+
scale_msa, gate_msa, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
|
205 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa)
|
206 |
+
elif self.adaptive_norm == "none":
|
207 |
+
scale_msa, gate_msa, scale_mlp, gate_mlp = None, None, None, None
|
208 |
+
else:
|
209 |
+
raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}")
|
210 |
+
|
211 |
+
norm_hidden_states = norm_hidden_states.squeeze(1) # TODO: Check if this is needed
|
212 |
+
|
213 |
+
# 1. Prepare GLIGEN inputs
|
214 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
215 |
+
|
216 |
+
attn_output = self.attn1(
|
217 |
+
norm_hidden_states,
|
218 |
+
freqs_cis=freqs_cis,
|
219 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
220 |
+
attention_mask=attention_mask,
|
221 |
+
**cross_attention_kwargs,
|
222 |
+
)
|
223 |
+
if gate_msa is not None:
|
224 |
+
attn_output = gate_msa * attn_output
|
225 |
+
|
226 |
+
hidden_states = attn_output + hidden_states
|
227 |
+
if hidden_states.ndim == 4:
|
228 |
+
hidden_states = hidden_states.squeeze(1)
|
229 |
+
|
230 |
+
# 3. Cross-Attention
|
231 |
+
if self.attn2 is not None:
|
232 |
+
if self.adaptive_norm == "none":
|
233 |
+
attn_input = self.attn2_norm(hidden_states)
|
234 |
+
else:
|
235 |
+
attn_input = hidden_states
|
236 |
+
attn_output = self.attn2(
|
237 |
+
attn_input,
|
238 |
+
freqs_cis=freqs_cis,
|
239 |
+
encoder_hidden_states=encoder_hidden_states,
|
240 |
+
attention_mask=encoder_attention_mask,
|
241 |
+
**cross_attention_kwargs,
|
242 |
+
)
|
243 |
+
hidden_states = attn_output + hidden_states
|
244 |
+
|
245 |
+
# 4. Feed-forward
|
246 |
+
norm_hidden_states = self.norm2(hidden_states)
|
247 |
+
if self.adaptive_norm == "single_scale_shift":
|
248 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
249 |
+
elif self.adaptive_norm == "single_scale":
|
250 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp)
|
251 |
+
elif self.adaptive_norm == "none":
|
252 |
+
pass
|
253 |
+
else:
|
254 |
+
raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}")
|
255 |
+
|
256 |
+
if self._chunk_size is not None:
|
257 |
+
# "feed_forward_chunk_size" can be used to save memory
|
258 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
259 |
+
else:
|
260 |
+
ff_output = self.ff(norm_hidden_states)
|
261 |
+
if gate_mlp is not None:
|
262 |
+
ff_output = gate_mlp * ff_output
|
263 |
+
|
264 |
+
hidden_states = ff_output + hidden_states
|
265 |
+
if hidden_states.ndim == 4:
|
266 |
+
hidden_states = hidden_states.squeeze(1)
|
267 |
+
|
268 |
+
return hidden_states
|
269 |
+
|
270 |
+
|
271 |
+
@maybe_allow_in_graph
|
272 |
+
class Attention(nn.Module):
|
273 |
+
r"""
|
274 |
+
A cross attention layer.
|
275 |
+
|
276 |
+
Parameters:
|
277 |
+
query_dim (`int`):
|
278 |
+
The number of channels in the query.
|
279 |
+
cross_attention_dim (`int`, *optional*):
|
280 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
281 |
+
heads (`int`, *optional*, defaults to 8):
|
282 |
+
The number of heads to use for multi-head attention.
|
283 |
+
dim_head (`int`, *optional*, defaults to 64):
|
284 |
+
The number of channels in each head.
|
285 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
286 |
+
The dropout probability to use.
|
287 |
+
bias (`bool`, *optional*, defaults to False):
|
288 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
289 |
+
upcast_attention (`bool`, *optional*, defaults to False):
|
290 |
+
Set to `True` to upcast the attention computation to `float32`.
|
291 |
+
upcast_softmax (`bool`, *optional*, defaults to False):
|
292 |
+
Set to `True` to upcast the softmax computation to `float32`.
|
293 |
+
cross_attention_norm (`str`, *optional*, defaults to `None`):
|
294 |
+
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
|
295 |
+
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
|
296 |
+
The number of groups to use for the group norm in the cross attention.
|
297 |
+
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
298 |
+
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
299 |
+
norm_num_groups (`int`, *optional*, defaults to `None`):
|
300 |
+
The number of groups to use for the group norm in the attention.
|
301 |
+
spatial_norm_dim (`int`, *optional*, defaults to `None`):
|
302 |
+
The number of channels to use for the spatial normalization.
|
303 |
+
out_bias (`bool`, *optional*, defaults to `True`):
|
304 |
+
Set to `True` to use a bias in the output linear layer.
|
305 |
+
scale_qk (`bool`, *optional*, defaults to `True`):
|
306 |
+
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
|
307 |
+
qk_norm (`str`, *optional*, defaults to None):
|
308 |
+
Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
|
309 |
+
only_cross_attention (`bool`, *optional*, defaults to `False`):
|
310 |
+
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
|
311 |
+
`added_kv_proj_dim` is not `None`.
|
312 |
+
eps (`float`, *optional*, defaults to 1e-5):
|
313 |
+
An additional value added to the denominator in group normalization that is used for numerical stability.
|
314 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0):
|
315 |
+
A factor to rescale the output by dividing it with this value.
|
316 |
+
residual_connection (`bool`, *optional*, defaults to `False`):
|
317 |
+
Set to `True` to add the residual connection to the output.
|
318 |
+
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
|
319 |
+
Set to `True` if the attention block is loaded from a deprecated state dict.
|
320 |
+
processor (`AttnProcessor`, *optional*, defaults to `None`):
|
321 |
+
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
|
322 |
+
`AttnProcessor` otherwise.
|
323 |
+
"""
|
324 |
+
|
325 |
+
def __init__(
|
326 |
+
self,
|
327 |
+
query_dim: int,
|
328 |
+
cross_attention_dim: Optional[int] = None,
|
329 |
+
heads: int = 8,
|
330 |
+
dim_head: int = 64,
|
331 |
+
dropout: float = 0.0,
|
332 |
+
bias: bool = False,
|
333 |
+
upcast_attention: bool = False,
|
334 |
+
upcast_softmax: bool = False,
|
335 |
+
cross_attention_norm: Optional[str] = None,
|
336 |
+
cross_attention_norm_num_groups: int = 32,
|
337 |
+
added_kv_proj_dim: Optional[int] = None,
|
338 |
+
norm_num_groups: Optional[int] = None,
|
339 |
+
spatial_norm_dim: Optional[int] = None,
|
340 |
+
out_bias: bool = True,
|
341 |
+
scale_qk: bool = True,
|
342 |
+
qk_norm: Optional[str] = None,
|
343 |
+
only_cross_attention: bool = False,
|
344 |
+
eps: float = 1e-5,
|
345 |
+
rescale_output_factor: float = 1.0,
|
346 |
+
residual_connection: bool = False,
|
347 |
+
_from_deprecated_attn_block: bool = False,
|
348 |
+
processor: Optional["AttnProcessor"] = None,
|
349 |
+
out_dim: int = None,
|
350 |
+
use_tpu_flash_attention: bool = False,
|
351 |
+
use_rope: bool = False,
|
352 |
+
):
|
353 |
+
super().__init__()
|
354 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
355 |
+
self.query_dim = query_dim
|
356 |
+
self.use_bias = bias
|
357 |
+
self.is_cross_attention = cross_attention_dim is not None
|
358 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
359 |
+
self.upcast_attention = upcast_attention
|
360 |
+
self.upcast_softmax = upcast_softmax
|
361 |
+
self.rescale_output_factor = rescale_output_factor
|
362 |
+
self.residual_connection = residual_connection
|
363 |
+
self.dropout = dropout
|
364 |
+
self.fused_projections = False
|
365 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
366 |
+
self.use_tpu_flash_attention = use_tpu_flash_attention
|
367 |
+
self.use_rope = use_rope
|
368 |
+
|
369 |
+
# we make use of this private variable to know whether this class is loaded
|
370 |
+
# with an deprecated state dict so that we can convert it on the fly
|
371 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
372 |
+
|
373 |
+
self.scale_qk = scale_qk
|
374 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
375 |
+
|
376 |
+
if qk_norm is None:
|
377 |
+
self.q_norm = nn.Identity()
|
378 |
+
self.k_norm = nn.Identity()
|
379 |
+
elif qk_norm == "rms_norm":
|
380 |
+
self.q_norm = RMSNorm(dim_head * heads, eps=1e-5)
|
381 |
+
self.k_norm = RMSNorm(dim_head * heads, eps=1e-5)
|
382 |
+
elif qk_norm == "layer_norm":
|
383 |
+
self.q_norm = nn.LayerNorm(dim_head * heads, eps=1e-5)
|
384 |
+
self.k_norm = nn.LayerNorm(dim_head * heads, eps=1e-5)
|
385 |
+
else:
|
386 |
+
raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
|
387 |
+
|
388 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
389 |
+
# for slice_size > 0 the attention score computation
|
390 |
+
# is split across the batch axis to save memory
|
391 |
+
# You can set slice_size with `set_attention_slice`
|
392 |
+
self.sliceable_head_dim = heads
|
393 |
+
|
394 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
395 |
+
self.only_cross_attention = only_cross_attention
|
396 |
+
|
397 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
398 |
+
raise ValueError(
|
399 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
400 |
+
)
|
401 |
+
|
402 |
+
if norm_num_groups is not None:
|
403 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
404 |
+
else:
|
405 |
+
self.group_norm = None
|
406 |
+
|
407 |
+
if spatial_norm_dim is not None:
|
408 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
409 |
+
else:
|
410 |
+
self.spatial_norm = None
|
411 |
+
|
412 |
+
if cross_attention_norm is None:
|
413 |
+
self.norm_cross = None
|
414 |
+
elif cross_attention_norm == "layer_norm":
|
415 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
416 |
+
elif cross_attention_norm == "group_norm":
|
417 |
+
if self.added_kv_proj_dim is not None:
|
418 |
+
# The given `encoder_hidden_states` are initially of shape
|
419 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
420 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
421 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
422 |
+
# the number of channels for the group norm.
|
423 |
+
norm_cross_num_channels = added_kv_proj_dim
|
424 |
+
else:
|
425 |
+
norm_cross_num_channels = self.cross_attention_dim
|
426 |
+
|
427 |
+
self.norm_cross = nn.GroupNorm(
|
428 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
raise ValueError(
|
432 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
433 |
+
)
|
434 |
+
|
435 |
+
linear_cls = nn.Linear
|
436 |
+
|
437 |
+
self.linear_cls = linear_cls
|
438 |
+
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
|
439 |
+
|
440 |
+
if not self.only_cross_attention:
|
441 |
+
# only relevant for the `AddedKVProcessor` classes
|
442 |
+
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
443 |
+
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
444 |
+
else:
|
445 |
+
self.to_k = None
|
446 |
+
self.to_v = None
|
447 |
+
|
448 |
+
if self.added_kv_proj_dim is not None:
|
449 |
+
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
450 |
+
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
451 |
+
|
452 |
+
self.to_out = nn.ModuleList([])
|
453 |
+
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
|
454 |
+
self.to_out.append(nn.Dropout(dropout))
|
455 |
+
|
456 |
+
# set attention processor
|
457 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
458 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
459 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
460 |
+
if processor is None:
|
461 |
+
processor = AttnProcessor2_0()
|
462 |
+
self.set_processor(processor)
|
463 |
+
|
464 |
+
def set_processor(self, processor: "AttnProcessor") -> None:
|
465 |
+
r"""
|
466 |
+
Set the attention processor to use.
|
467 |
+
|
468 |
+
Args:
|
469 |
+
processor (`AttnProcessor`):
|
470 |
+
The attention processor to use.
|
471 |
+
"""
|
472 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
473 |
+
# pop `processor` from `self._modules`
|
474 |
+
if (
|
475 |
+
hasattr(self, "processor")
|
476 |
+
and isinstance(self.processor, torch.nn.Module)
|
477 |
+
and not isinstance(processor, torch.nn.Module)
|
478 |
+
):
|
479 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
480 |
+
self._modules.pop("processor")
|
481 |
+
|
482 |
+
self.processor = processor
|
483 |
+
|
484 |
+
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": # noqa: F821
|
485 |
+
r"""
|
486 |
+
Get the attention processor in use.
|
487 |
+
|
488 |
+
Args:
|
489 |
+
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
|
490 |
+
Set to `True` to return the deprecated LoRA attention processor.
|
491 |
+
|
492 |
+
Returns:
|
493 |
+
"AttentionProcessor": The attention processor in use.
|
494 |
+
"""
|
495 |
+
if not return_deprecated_lora:
|
496 |
+
return self.processor
|
497 |
+
|
498 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
499 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
500 |
+
# with PEFT is completed.
|
501 |
+
is_lora_activated = {
|
502 |
+
name: module.lora_layer is not None
|
503 |
+
for name, module in self.named_modules()
|
504 |
+
if hasattr(module, "lora_layer")
|
505 |
+
}
|
506 |
+
|
507 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
508 |
+
if not any(is_lora_activated.values()):
|
509 |
+
return self.processor
|
510 |
+
|
511 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
512 |
+
is_lora_activated.pop("add_k_proj", None)
|
513 |
+
is_lora_activated.pop("add_v_proj", None)
|
514 |
+
# 2. else it is not posssible that only some layers have LoRA activated
|
515 |
+
if not all(is_lora_activated.values()):
|
516 |
+
raise ValueError(
|
517 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
518 |
+
)
|
519 |
+
|
520 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
521 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
522 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
523 |
+
|
524 |
+
hidden_size = self.inner_dim
|
525 |
+
|
526 |
+
# now create a LoRA attention processor from the LoRA layers
|
527 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
528 |
+
kwargs = {
|
529 |
+
"cross_attention_dim": self.cross_attention_dim,
|
530 |
+
"rank": self.to_q.lora_layer.rank,
|
531 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
532 |
+
"q_rank": self.to_q.lora_layer.rank,
|
533 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
534 |
+
"k_rank": self.to_k.lora_layer.rank,
|
535 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
536 |
+
"v_rank": self.to_v.lora_layer.rank,
|
537 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
538 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
539 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
540 |
+
}
|
541 |
+
|
542 |
+
if hasattr(self.processor, "attention_op"):
|
543 |
+
kwargs["attention_op"] = self.processor.attention_op
|
544 |
+
|
545 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
546 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
547 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
548 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
549 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
550 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
551 |
+
lora_processor = lora_processor_cls(
|
552 |
+
hidden_size,
|
553 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
554 |
+
rank=self.to_q.lora_layer.rank,
|
555 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
556 |
+
)
|
557 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
558 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
559 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
560 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
561 |
+
|
562 |
+
# only save if used
|
563 |
+
if self.add_k_proj.lora_layer is not None:
|
564 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
565 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
566 |
+
else:
|
567 |
+
lora_processor.add_k_proj_lora = None
|
568 |
+
lora_processor.add_v_proj_lora = None
|
569 |
+
else:
|
570 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
571 |
+
|
572 |
+
return lora_processor
|
573 |
+
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
hidden_states: torch.FloatTensor,
|
577 |
+
freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
578 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
579 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
580 |
+
**cross_attention_kwargs,
|
581 |
+
) -> torch.Tensor:
|
582 |
+
r"""
|
583 |
+
The forward method of the `Attention` class.
|
584 |
+
|
585 |
+
Args:
|
586 |
+
hidden_states (`torch.Tensor`):
|
587 |
+
The hidden states of the query.
|
588 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
589 |
+
The hidden states of the encoder.
|
590 |
+
attention_mask (`torch.Tensor`, *optional*):
|
591 |
+
The attention mask to use. If `None`, no mask is applied.
|
592 |
+
**cross_attention_kwargs:
|
593 |
+
Additional keyword arguments to pass along to the cross attention.
|
594 |
+
|
595 |
+
Returns:
|
596 |
+
`torch.Tensor`: The output of the attention layer.
|
597 |
+
"""
|
598 |
+
# The `Attention` class can call different attention processors / attention functions
|
599 |
+
# here we simply pass along all tensors to the selected processor class
|
600 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
601 |
+
|
602 |
+
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
603 |
+
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
|
604 |
+
if len(unused_kwargs) > 0:
|
605 |
+
logger.warning(
|
606 |
+
f"cross_attention_kwargs {unused_kwargs} are not expected by"
|
607 |
+
f" {self.processor.__class__.__name__} and will be ignored."
|
608 |
+
)
|
609 |
+
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
|
610 |
+
|
611 |
+
return self.processor(
|
612 |
+
self,
|
613 |
+
hidden_states,
|
614 |
+
freqs_cis=freqs_cis,
|
615 |
+
encoder_hidden_states=encoder_hidden_states,
|
616 |
+
attention_mask=attention_mask,
|
617 |
+
**cross_attention_kwargs,
|
618 |
+
)
|
619 |
+
|
620 |
+
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
|
621 |
+
r"""
|
622 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
|
623 |
+
is the number of heads initialized while constructing the `Attention` class.
|
624 |
+
|
625 |
+
Args:
|
626 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
627 |
+
|
628 |
+
Returns:
|
629 |
+
`torch.Tensor`: The reshaped tensor.
|
630 |
+
"""
|
631 |
+
head_size = self.heads
|
632 |
+
batch_size, seq_len, dim = tensor.shape
|
633 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
634 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
635 |
+
return tensor
|
636 |
+
|
637 |
+
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
|
638 |
+
r"""
|
639 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
|
640 |
+
the number of heads initialized while constructing the `Attention` class.
|
641 |
+
|
642 |
+
Args:
|
643 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
644 |
+
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
|
645 |
+
reshaped to `[batch_size * heads, seq_len, dim // heads]`.
|
646 |
+
|
647 |
+
Returns:
|
648 |
+
`torch.Tensor`: The reshaped tensor.
|
649 |
+
"""
|
650 |
+
|
651 |
+
head_size = self.heads
|
652 |
+
if tensor.ndim == 3:
|
653 |
+
batch_size, seq_len, dim = tensor.shape
|
654 |
+
extra_dim = 1
|
655 |
+
else:
|
656 |
+
batch_size, extra_dim, seq_len, dim = tensor.shape
|
657 |
+
tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
|
658 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
659 |
+
|
660 |
+
if out_dim == 3:
|
661 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)
|
662 |
+
|
663 |
+
return tensor
|
664 |
+
|
665 |
+
def get_attention_scores(
|
666 |
+
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
|
667 |
+
) -> torch.Tensor:
|
668 |
+
r"""
|
669 |
+
Compute the attention scores.
|
670 |
+
|
671 |
+
Args:
|
672 |
+
query (`torch.Tensor`): The query tensor.
|
673 |
+
key (`torch.Tensor`): The key tensor.
|
674 |
+
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
|
675 |
+
|
676 |
+
Returns:
|
677 |
+
`torch.Tensor`: The attention probabilities/scores.
|
678 |
+
"""
|
679 |
+
dtype = query.dtype
|
680 |
+
if self.upcast_attention:
|
681 |
+
query = query.float()
|
682 |
+
key = key.float()
|
683 |
+
|
684 |
+
if attention_mask is None:
|
685 |
+
baddbmm_input = torch.empty(
|
686 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
687 |
+
)
|
688 |
+
beta = 0
|
689 |
+
else:
|
690 |
+
baddbmm_input = attention_mask
|
691 |
+
beta = 1
|
692 |
+
|
693 |
+
attention_scores = torch.baddbmm(
|
694 |
+
baddbmm_input,
|
695 |
+
query,
|
696 |
+
key.transpose(-1, -2),
|
697 |
+
beta=beta,
|
698 |
+
alpha=self.scale,
|
699 |
+
)
|
700 |
+
del baddbmm_input
|
701 |
+
|
702 |
+
if self.upcast_softmax:
|
703 |
+
attention_scores = attention_scores.float()
|
704 |
+
|
705 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
706 |
+
del attention_scores
|
707 |
+
|
708 |
+
attention_probs = attention_probs.to(dtype)
|
709 |
+
|
710 |
+
return attention_probs
|
711 |
+
|
712 |
+
def prepare_attention_mask(
|
713 |
+
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
|
714 |
+
) -> torch.Tensor:
|
715 |
+
r"""
|
716 |
+
Prepare the attention mask for the attention computation.
|
717 |
+
|
718 |
+
Args:
|
719 |
+
attention_mask (`torch.Tensor`):
|
720 |
+
The attention mask to prepare.
|
721 |
+
target_length (`int`):
|
722 |
+
The target length of the attention mask. This is the length of the attention mask after padding.
|
723 |
+
batch_size (`int`):
|
724 |
+
The batch size, which is used to repeat the attention mask.
|
725 |
+
out_dim (`int`, *optional*, defaults to `3`):
|
726 |
+
The output dimension of the attention mask. Can be either `3` or `4`.
|
727 |
+
|
728 |
+
Returns:
|
729 |
+
`torch.Tensor`: The prepared attention mask.
|
730 |
+
"""
|
731 |
+
head_size = self.heads
|
732 |
+
if attention_mask is None:
|
733 |
+
return attention_mask
|
734 |
+
|
735 |
+
current_length: int = attention_mask.shape[-1]
|
736 |
+
if current_length != target_length:
|
737 |
+
if attention_mask.device.type == "mps":
|
738 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
739 |
+
# Instead, we can manually construct the padding tensor.
|
740 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
741 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
742 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
743 |
+
else:
|
744 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
745 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
746 |
+
# remaining_length: int = target_length - current_length
|
747 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
748 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
749 |
+
|
750 |
+
if out_dim == 3:
|
751 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
752 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
753 |
+
elif out_dim == 4:
|
754 |
+
attention_mask = attention_mask.unsqueeze(1)
|
755 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
756 |
+
|
757 |
+
return attention_mask
|
758 |
+
|
759 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
760 |
+
r"""
|
761 |
+
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
|
762 |
+
`Attention` class.
|
763 |
+
|
764 |
+
Args:
|
765 |
+
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
|
766 |
+
|
767 |
+
Returns:
|
768 |
+
`torch.Tensor`: The normalized encoder hidden states.
|
769 |
+
"""
|
770 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
771 |
+
|
772 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
773 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
774 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
775 |
+
# Group norm norms along the channels dimension and expects
|
776 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
777 |
+
# to norm along the hidden dimension, so we need to move
|
778 |
+
# (batch_size, sequence_length, hidden_size) ->
|
779 |
+
# (batch_size, hidden_size, sequence_length)
|
780 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
781 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
782 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
783 |
+
else:
|
784 |
+
assert False
|
785 |
+
|
786 |
+
return encoder_hidden_states
|
787 |
+
|
788 |
+
@staticmethod
|
789 |
+
def apply_rotary_emb(
|
790 |
+
input_tensor: torch.Tensor,
|
791 |
+
freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor],
|
792 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
793 |
+
cos_freqs = freqs_cis[0]
|
794 |
+
sin_freqs = freqs_cis[1]
|
795 |
+
|
796 |
+
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
|
797 |
+
t1, t2 = t_dup.unbind(dim=-1)
|
798 |
+
t_dup = torch.stack((-t2, t1), dim=-1)
|
799 |
+
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
|
800 |
+
|
801 |
+
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
|
802 |
+
|
803 |
+
return out
|
804 |
+
|
805 |
+
|
806 |
+
class AttnProcessor2_0:
|
807 |
+
r"""
|
808 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
809 |
+
"""
|
810 |
+
|
811 |
+
def __init__(self):
|
812 |
+
pass
|
813 |
+
|
814 |
+
def __call__(
|
815 |
+
self,
|
816 |
+
attn: Attention,
|
817 |
+
hidden_states: torch.FloatTensor,
|
818 |
+
freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor],
|
819 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
820 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
821 |
+
temb: Optional[torch.FloatTensor] = None,
|
822 |
+
*args,
|
823 |
+
**kwargs,
|
824 |
+
) -> torch.FloatTensor:
|
825 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
826 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
827 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
828 |
+
|
829 |
+
residual = hidden_states
|
830 |
+
if attn.spatial_norm is not None:
|
831 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
832 |
+
|
833 |
+
input_ndim = hidden_states.ndim
|
834 |
+
|
835 |
+
if input_ndim == 4:
|
836 |
+
batch_size, channel, height, width = hidden_states.shape
|
837 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
838 |
+
|
839 |
+
batch_size, sequence_length, _ = (
|
840 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
841 |
+
)
|
842 |
+
|
843 |
+
if (attention_mask is not None) and (not attn.use_tpu_flash_attention):
|
844 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
845 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
846 |
+
# (batch, heads, source_length, target_length)
|
847 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
848 |
+
|
849 |
+
if attn.group_norm is not None:
|
850 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
851 |
+
|
852 |
+
query = attn.to_q(hidden_states)
|
853 |
+
query = attn.q_norm(query)
|
854 |
+
|
855 |
+
if encoder_hidden_states is not None:
|
856 |
+
if attn.norm_cross:
|
857 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
858 |
+
key = attn.to_k(encoder_hidden_states)
|
859 |
+
key = attn.k_norm(key)
|
860 |
+
else: # if no context provided do self-attention
|
861 |
+
encoder_hidden_states = hidden_states
|
862 |
+
key = attn.to_k(hidden_states)
|
863 |
+
key = attn.k_norm(key)
|
864 |
+
if attn.use_rope:
|
865 |
+
key = attn.apply_rotary_emb(key, freqs_cis)
|
866 |
+
query = attn.apply_rotary_emb(query, freqs_cis)
|
867 |
+
|
868 |
+
value = attn.to_v(encoder_hidden_states)
|
869 |
+
|
870 |
+
inner_dim = key.shape[-1]
|
871 |
+
head_dim = inner_dim // attn.heads
|
872 |
+
|
873 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
874 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
875 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
876 |
+
|
877 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
878 |
+
|
879 |
+
if attn.use_tpu_flash_attention: # use tpu attention offload 'flash attention'
|
880 |
+
q_segment_indexes = None
|
881 |
+
if attention_mask is not None: # if mask is required need to tune both segmenIds fields
|
882 |
+
# attention_mask = torch.squeeze(attention_mask).to(torch.float32)
|
883 |
+
attention_mask = attention_mask.to(torch.float32)
|
884 |
+
q_segment_indexes = torch.ones(batch_size, query.shape[2], device=query.device, dtype=torch.float32)
|
885 |
+
assert (
|
886 |
+
attention_mask.shape[1] == key.shape[2]
|
887 |
+
), f"ERROR: KEY SHAPE must be same as attention mask [{key.shape[2]}, {attention_mask.shape[1]}]"
|
888 |
+
|
889 |
+
assert (
|
890 |
+
query.shape[2] % 128 == 0
|
891 |
+
), f"ERROR: QUERY SHAPE must be divisible by 128 (TPU limitation) [{query.shape[2]}]"
|
892 |
+
assert (
|
893 |
+
key.shape[2] % 128 == 0
|
894 |
+
), f"ERROR: KEY SHAPE must be divisible by 128 (TPU limitation) [{key.shape[2]}]"
|
895 |
+
|
896 |
+
# run the TPU kernel implemented in jax with pallas
|
897 |
+
hidden_states = flash_attention(
|
898 |
+
q=query,
|
899 |
+
k=key,
|
900 |
+
v=value,
|
901 |
+
q_segment_ids=q_segment_indexes,
|
902 |
+
kv_segment_ids=attention_mask,
|
903 |
+
sm_scale=attn.scale,
|
904 |
+
)
|
905 |
+
else:
|
906 |
+
hidden_states = F.scaled_dot_product_attention(
|
907 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
908 |
+
)
|
909 |
+
|
910 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
911 |
+
hidden_states = hidden_states.to(query.dtype)
|
912 |
+
|
913 |
+
# linear proj
|
914 |
+
hidden_states = attn.to_out[0](hidden_states)
|
915 |
+
# dropout
|
916 |
+
hidden_states = attn.to_out[1](hidden_states)
|
917 |
+
|
918 |
+
if input_ndim == 4:
|
919 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
920 |
+
|
921 |
+
if attn.residual_connection:
|
922 |
+
hidden_states = hidden_states + residual
|
923 |
+
|
924 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
925 |
+
|
926 |
+
return hidden_states
|
927 |
+
|
928 |
+
|
929 |
+
class AttnProcessor:
|
930 |
+
r"""
|
931 |
+
Default processor for performing attention-related computations.
|
932 |
+
"""
|
933 |
+
|
934 |
+
def __call__(
|
935 |
+
self,
|
936 |
+
attn: Attention,
|
937 |
+
hidden_states: torch.FloatTensor,
|
938 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
939 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
940 |
+
temb: Optional[torch.FloatTensor] = None,
|
941 |
+
*args,
|
942 |
+
**kwargs,
|
943 |
+
) -> torch.Tensor:
|
944 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
945 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
946 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
947 |
+
|
948 |
+
residual = hidden_states
|
949 |
+
|
950 |
+
if attn.spatial_norm is not None:
|
951 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
952 |
+
|
953 |
+
input_ndim = hidden_states.ndim
|
954 |
+
|
955 |
+
if input_ndim == 4:
|
956 |
+
batch_size, channel, height, width = hidden_states.shape
|
957 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
958 |
+
|
959 |
+
batch_size, sequence_length, _ = (
|
960 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
961 |
+
)
|
962 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
963 |
+
|
964 |
+
if attn.group_norm is not None:
|
965 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
966 |
+
|
967 |
+
query = attn.to_q(hidden_states)
|
968 |
+
|
969 |
+
if encoder_hidden_states is None:
|
970 |
+
encoder_hidden_states = hidden_states
|
971 |
+
elif attn.norm_cross:
|
972 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
973 |
+
|
974 |
+
key = attn.to_k(encoder_hidden_states)
|
975 |
+
value = attn.to_v(encoder_hidden_states)
|
976 |
+
|
977 |
+
query = attn.head_to_batch_dim(query)
|
978 |
+
key = attn.head_to_batch_dim(key)
|
979 |
+
value = attn.head_to_batch_dim(value)
|
980 |
+
|
981 |
+
query = attn.q_norm(query)
|
982 |
+
key = attn.k_norm(key)
|
983 |
+
|
984 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
985 |
+
hidden_states = torch.bmm(attention_probs, value)
|
986 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
987 |
+
|
988 |
+
# linear proj
|
989 |
+
hidden_states = attn.to_out[0](hidden_states)
|
990 |
+
# dropout
|
991 |
+
hidden_states = attn.to_out[1](hidden_states)
|
992 |
+
|
993 |
+
if input_ndim == 4:
|
994 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
995 |
+
|
996 |
+
if attn.residual_connection:
|
997 |
+
hidden_states = hidden_states + residual
|
998 |
+
|
999 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1000 |
+
|
1001 |
+
return hidden_states
|
1002 |
+
|
1003 |
+
|
1004 |
+
class FeedForward(nn.Module):
|
1005 |
+
r"""
|
1006 |
+
A feed-forward layer.
|
1007 |
+
|
1008 |
+
Parameters:
|
1009 |
+
dim (`int`): The number of channels in the input.
|
1010 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
1011 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
1012 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1013 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
1014 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
1015 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
1016 |
+
"""
|
1017 |
+
|
1018 |
+
def __init__(
|
1019 |
+
self,
|
1020 |
+
dim: int,
|
1021 |
+
dim_out: Optional[int] = None,
|
1022 |
+
mult: int = 4,
|
1023 |
+
dropout: float = 0.0,
|
1024 |
+
activation_fn: str = "geglu",
|
1025 |
+
final_dropout: bool = False,
|
1026 |
+
inner_dim=None,
|
1027 |
+
bias: bool = True,
|
1028 |
+
):
|
1029 |
+
super().__init__()
|
1030 |
+
if inner_dim is None:
|
1031 |
+
inner_dim = int(dim * mult)
|
1032 |
+
dim_out = dim_out if dim_out is not None else dim
|
1033 |
+
linear_cls = nn.Linear
|
1034 |
+
|
1035 |
+
if activation_fn == "gelu":
|
1036 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
1037 |
+
elif activation_fn == "gelu-approximate":
|
1038 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
1039 |
+
elif activation_fn == "geglu":
|
1040 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
1041 |
+
elif activation_fn == "geglu-approximate":
|
1042 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
1043 |
+
else:
|
1044 |
+
raise ValueError(f"Unsupported activation function: {activation_fn}")
|
1045 |
+
|
1046 |
+
self.net = nn.ModuleList([])
|
1047 |
+
# project in
|
1048 |
+
self.net.append(act_fn)
|
1049 |
+
# project dropout
|
1050 |
+
self.net.append(nn.Dropout(dropout))
|
1051 |
+
# project out
|
1052 |
+
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
|
1053 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
1054 |
+
if final_dropout:
|
1055 |
+
self.net.append(nn.Dropout(dropout))
|
1056 |
+
|
1057 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
1058 |
+
compatible_cls = (GEGLU, LoRACompatibleLinear)
|
1059 |
+
for module in self.net:
|
1060 |
+
if isinstance(module, compatible_cls):
|
1061 |
+
hidden_states = module(hidden_states, scale)
|
1062 |
+
else:
|
1063 |
+
hidden_states = module(hidden_states)
|
1064 |
+
return hidden_states
|
xora/models/transformers/symmetric_patchifier.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers.configuration_utils import ConfigMixin
|
6 |
+
from einops import rearrange
|
7 |
+
from torch import Tensor
|
8 |
+
|
9 |
+
from xora.utils.torch_utils import append_dims
|
10 |
+
|
11 |
+
|
12 |
+
class Patchifier(ConfigMixin, ABC):
|
13 |
+
def __init__(self, patch_size: int):
|
14 |
+
super().__init__()
|
15 |
+
self._patch_size = (1, patch_size, patch_size)
|
16 |
+
|
17 |
+
@abstractmethod
|
18 |
+
def patchify(self, latents: Tensor, frame_rates: Tensor, scale_grid: bool) -> Tuple[Tensor, Tensor]:
|
19 |
+
pass
|
20 |
+
|
21 |
+
@abstractmethod
|
22 |
+
def unpatchify(
|
23 |
+
self, latents: Tensor, output_height: int, output_width: int, output_num_frames: int, out_channels: int
|
24 |
+
) -> Tuple[Tensor, Tensor]:
|
25 |
+
pass
|
26 |
+
|
27 |
+
@property
|
28 |
+
def patch_size(self):
|
29 |
+
return self._patch_size
|
30 |
+
|
31 |
+
def get_grid(self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device):
|
32 |
+
f = orig_num_frames // self._patch_size[0]
|
33 |
+
h = orig_height // self._patch_size[1]
|
34 |
+
w = orig_width // self._patch_size[2]
|
35 |
+
grid_h = torch.arange(h, dtype=torch.float32, device=device)
|
36 |
+
grid_w = torch.arange(w, dtype=torch.float32, device=device)
|
37 |
+
grid_f = torch.arange(f, dtype=torch.float32, device=device)
|
38 |
+
grid = torch.meshgrid(grid_f, grid_h, grid_w)
|
39 |
+
grid = torch.stack(grid, dim=0)
|
40 |
+
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
|
41 |
+
|
42 |
+
if scale_grid is not None:
|
43 |
+
for i in range(3):
|
44 |
+
if isinstance(scale_grid[i], Tensor):
|
45 |
+
scale = append_dims(scale_grid[i], grid.ndim - 1)
|
46 |
+
else:
|
47 |
+
scale = scale_grid[i]
|
48 |
+
grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i]
|
49 |
+
|
50 |
+
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size)
|
51 |
+
return grid
|
52 |
+
|
53 |
+
|
54 |
+
def pixart_alpha_patchify(
|
55 |
+
latents: Tensor,
|
56 |
+
patch_size: int,
|
57 |
+
) -> Tuple[Tensor, Tensor]:
|
58 |
+
latents = rearrange(
|
59 |
+
latents,
|
60 |
+
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
|
61 |
+
p1=patch_size[0],
|
62 |
+
p2=patch_size[1],
|
63 |
+
p3=patch_size[2],
|
64 |
+
)
|
65 |
+
return latents
|
66 |
+
|
67 |
+
class SymmetricPatchifier(Patchifier):
|
68 |
+
def patchify(
|
69 |
+
self,
|
70 |
+
latents: Tensor,
|
71 |
+
) -> Tuple[Tensor, Tensor]:
|
72 |
+
return pixart_alpha_patchify(latents, self._patch_size)
|
73 |
+
|
74 |
+
def unpatchify(
|
75 |
+
self, latents: Tensor, output_height: int, output_width: int, output_num_frames: int, out_channels: int
|
76 |
+
) -> Tuple[Tensor, Tensor]:
|
77 |
+
output_height = output_height // self._patch_size[1]
|
78 |
+
output_width = output_width // self._patch_size[2]
|
79 |
+
latents = rearrange(
|
80 |
+
latents,
|
81 |
+
"b (f h w) (c p q) -> b c f (h p) (w q) ",
|
82 |
+
f=output_num_frames,
|
83 |
+
h=output_height,
|
84 |
+
w=output_width,
|
85 |
+
p=self._patch_size[1],
|
86 |
+
q=self._patch_size[2],
|
87 |
+
)
|
88 |
+
return latents
|
xora/models/transformers/transformer3d.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
|
2 |
+
import math
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, List, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.models.embeddings import PixArtAlphaTextProjection
|
9 |
+
from diffusers.models.modeling_utils import ModelMixin
|
10 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
11 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from xora.models.transformers.attention import BasicTransformerBlock
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class Transformer3DModelOutput(BaseOutput):
|
19 |
+
"""
|
20 |
+
The output of [`Transformer2DModel`].
|
21 |
+
|
22 |
+
Args:
|
23 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
24 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
25 |
+
distributions for the unnoised latent pixels.
|
26 |
+
"""
|
27 |
+
|
28 |
+
sample: torch.FloatTensor
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
32 |
+
_supports_gradient_checkpointing = True
|
33 |
+
|
34 |
+
@register_to_config
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
num_attention_heads: int = 16,
|
38 |
+
attention_head_dim: int = 88,
|
39 |
+
in_channels: Optional[int] = None,
|
40 |
+
out_channels: Optional[int] = None,
|
41 |
+
num_layers: int = 1,
|
42 |
+
dropout: float = 0.0,
|
43 |
+
norm_num_groups: int = 32,
|
44 |
+
cross_attention_dim: Optional[int] = None,
|
45 |
+
attention_bias: bool = False,
|
46 |
+
num_vector_embeds: Optional[int] = None,
|
47 |
+
activation_fn: str = "geglu",
|
48 |
+
num_embeds_ada_norm: Optional[int] = None,
|
49 |
+
use_linear_projection: bool = False,
|
50 |
+
only_cross_attention: bool = False,
|
51 |
+
double_self_attention: bool = False,
|
52 |
+
upcast_attention: bool = False,
|
53 |
+
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale'
|
54 |
+
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
|
55 |
+
norm_elementwise_affine: bool = True,
|
56 |
+
norm_eps: float = 1e-5,
|
57 |
+
attention_type: str = "default",
|
58 |
+
caption_channels: int = None,
|
59 |
+
project_to_2d_pos: bool = False,
|
60 |
+
use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention')
|
61 |
+
qk_norm: Optional[str] = None,
|
62 |
+
positional_embedding_type: str = "absolute",
|
63 |
+
positional_embedding_theta: Optional[float] = None,
|
64 |
+
positional_embedding_max_pos: Optional[List[int]] = None,
|
65 |
+
timestep_scale_multiplier: Optional[float] = None,
|
66 |
+
):
|
67 |
+
super().__init__()
|
68 |
+
self.use_tpu_flash_attention = use_tpu_flash_attention # FIXME: push config down to the attention modules
|
69 |
+
self.use_linear_projection = use_linear_projection
|
70 |
+
self.num_attention_heads = num_attention_heads
|
71 |
+
self.attention_head_dim = attention_head_dim
|
72 |
+
inner_dim = num_attention_heads * attention_head_dim
|
73 |
+
self.inner_dim = inner_dim
|
74 |
+
|
75 |
+
self.project_to_2d_pos = project_to_2d_pos
|
76 |
+
|
77 |
+
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
|
78 |
+
|
79 |
+
self.positional_embedding_type = positional_embedding_type
|
80 |
+
self.positional_embedding_theta = positional_embedding_theta
|
81 |
+
self.positional_embedding_max_pos = positional_embedding_max_pos
|
82 |
+
self.use_rope = self.positional_embedding_type == "rope"
|
83 |
+
self.timestep_scale_multiplier = timestep_scale_multiplier
|
84 |
+
|
85 |
+
if self.positional_embedding_type == "absolute":
|
86 |
+
embed_dim_3d = math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim
|
87 |
+
if self.project_to_2d_pos:
|
88 |
+
self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False)
|
89 |
+
self._init_to_2d_proj_weights(self.to_2d_proj)
|
90 |
+
elif self.positional_embedding_type == "rope":
|
91 |
+
if positional_embedding_theta is None:
|
92 |
+
raise ValueError(
|
93 |
+
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
|
94 |
+
)
|
95 |
+
if positional_embedding_max_pos is None:
|
96 |
+
raise ValueError(
|
97 |
+
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
|
98 |
+
)
|
99 |
+
|
100 |
+
# 3. Define transformers blocks
|
101 |
+
self.transformer_blocks = nn.ModuleList(
|
102 |
+
[
|
103 |
+
BasicTransformerBlock(
|
104 |
+
inner_dim,
|
105 |
+
num_attention_heads,
|
106 |
+
attention_head_dim,
|
107 |
+
dropout=dropout,
|
108 |
+
cross_attention_dim=cross_attention_dim,
|
109 |
+
activation_fn=activation_fn,
|
110 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
111 |
+
attention_bias=attention_bias,
|
112 |
+
only_cross_attention=only_cross_attention,
|
113 |
+
double_self_attention=double_self_attention,
|
114 |
+
upcast_attention=upcast_attention,
|
115 |
+
adaptive_norm=adaptive_norm,
|
116 |
+
standardization_norm=standardization_norm,
|
117 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
118 |
+
norm_eps=norm_eps,
|
119 |
+
attention_type=attention_type,
|
120 |
+
use_tpu_flash_attention=use_tpu_flash_attention,
|
121 |
+
qk_norm=qk_norm,
|
122 |
+
use_rope=self.use_rope,
|
123 |
+
)
|
124 |
+
for d in range(num_layers)
|
125 |
+
]
|
126 |
+
)
|
127 |
+
|
128 |
+
# 4. Define output layers
|
129 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
130 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
131 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
132 |
+
self.proj_out = nn.Linear(inner_dim, self.out_channels)
|
133 |
+
|
134 |
+
# 5. PixArt-Alpha blocks.
|
135 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)
|
136 |
+
if adaptive_norm == "single_scale":
|
137 |
+
# Use 4 channels instead of the 6 for the PixArt-Alpha scale + shift ada norm.
|
138 |
+
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
|
139 |
+
|
140 |
+
self.caption_projection = None
|
141 |
+
if caption_channels is not None:
|
142 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
143 |
+
|
144 |
+
self.gradient_checkpointing = False
|
145 |
+
|
146 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
147 |
+
if hasattr(module, "gradient_checkpointing"):
|
148 |
+
module.gradient_checkpointing = value
|
149 |
+
|
150 |
+
@staticmethod
|
151 |
+
def _init_to_2d_proj_weights(linear_layer):
|
152 |
+
input_features = linear_layer.weight.data.size(1)
|
153 |
+
output_features = linear_layer.weight.data.size(0)
|
154 |
+
|
155 |
+
# Start with a zero matrix
|
156 |
+
identity_like = torch.zeros((output_features, input_features))
|
157 |
+
|
158 |
+
# Fill the diagonal with 1's as much as possible
|
159 |
+
min_features = min(output_features, input_features)
|
160 |
+
identity_like[:min_features, :min_features] = torch.eye(min_features)
|
161 |
+
linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device)
|
162 |
+
|
163 |
+
def get_fractional_positions(self, indices_grid):
|
164 |
+
fractional_positions = torch.stack(
|
165 |
+
[indices_grid[:, i] / self.positional_embedding_max_pos[i] for i in range(3)], dim=-1
|
166 |
+
)
|
167 |
+
return fractional_positions
|
168 |
+
|
169 |
+
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
|
170 |
+
dtype = self.dtype
|
171 |
+
dim = self.inner_dim
|
172 |
+
theta = self.positional_embedding_theta
|
173 |
+
|
174 |
+
fractional_positions = self.get_fractional_positions(indices_grid)
|
175 |
+
|
176 |
+
start = 1
|
177 |
+
end = theta
|
178 |
+
device = fractional_positions.device
|
179 |
+
if spacing == "exp":
|
180 |
+
indices = theta ** (
|
181 |
+
torch.linspace(math.log(start, theta), math.log(end, theta), dim // 6, device=device, dtype=dtype)
|
182 |
+
)
|
183 |
+
indices = indices.to(dtype=dtype)
|
184 |
+
elif spacing == "exp_2":
|
185 |
+
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
|
186 |
+
indices = indices.to(dtype=dtype)
|
187 |
+
elif spacing == "linear":
|
188 |
+
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
|
189 |
+
elif spacing == "sqrt":
|
190 |
+
indices = torch.linspace(start**2, end**2, dim // 6, device=device, dtype=dtype).sqrt()
|
191 |
+
|
192 |
+
indices = indices * math.pi / 2
|
193 |
+
|
194 |
+
if spacing == "exp_2":
|
195 |
+
freqs = (indices * fractional_positions.unsqueeze(-1)).transpose(-1, -2).flatten(2)
|
196 |
+
else:
|
197 |
+
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
|
198 |
+
|
199 |
+
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
200 |
+
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
201 |
+
if dim % 6 != 0:
|
202 |
+
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
203 |
+
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
204 |
+
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
205 |
+
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
206 |
+
return cos_freq, sin_freq
|
207 |
+
|
208 |
+
def forward(
|
209 |
+
self,
|
210 |
+
hidden_states: torch.Tensor,
|
211 |
+
indices_grid: torch.Tensor,
|
212 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
213 |
+
timestep: Optional[torch.LongTensor] = None,
|
214 |
+
class_labels: Optional[torch.LongTensor] = None,
|
215 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
217 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
218 |
+
return_dict: bool = True,
|
219 |
+
):
|
220 |
+
"""
|
221 |
+
The [`Transformer2DModel`] forward method.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
225 |
+
Input `hidden_states`.
|
226 |
+
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
|
227 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
228 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
229 |
+
self-attention.
|
230 |
+
timestep ( `torch.LongTensor`, *optional*):
|
231 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
232 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
233 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
234 |
+
`AdaLayerZeroNorm`.
|
235 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
236 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
237 |
+
`self.processor` in
|
238 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
239 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
240 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
241 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
242 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
243 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
244 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
245 |
+
|
246 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
247 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
248 |
+
|
249 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
250 |
+
above. This bias will be added to the cross-attention scores.
|
251 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
252 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
253 |
+
tuple.
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
257 |
+
`tuple` where the first element is the sample tensor.
|
258 |
+
"""
|
259 |
+
# for tpu attention offload 2d token masks are used. No need to transform.
|
260 |
+
if not self.use_tpu_flash_attention:
|
261 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
262 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
263 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
264 |
+
# expects mask of shape:
|
265 |
+
# [batch, key_tokens]
|
266 |
+
# adds singleton query_tokens dimension:
|
267 |
+
# [batch, 1, key_tokens]
|
268 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
269 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
270 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
271 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
272 |
+
# assume that mask is expressed as:
|
273 |
+
# (1 = keep, 0 = discard)
|
274 |
+
# convert mask into a bias that can be added to attention scores:
|
275 |
+
# (keep = +0, discard = -10000.0)
|
276 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
277 |
+
attention_mask = attention_mask.unsqueeze(1)
|
278 |
+
|
279 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
280 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
281 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
282 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
283 |
+
|
284 |
+
# 1. Input
|
285 |
+
hidden_states = self.patchify_proj(hidden_states)
|
286 |
+
|
287 |
+
if self.timestep_scale_multiplier:
|
288 |
+
timestep = self.timestep_scale_multiplier * timestep
|
289 |
+
|
290 |
+
if self.positional_embedding_type == "rope":
|
291 |
+
freqs_cis = self.precompute_freqs_cis(indices_grid)
|
292 |
+
else:
|
293 |
+
raise NotImplementedError("Only rope pos embed supported.")
|
294 |
+
|
295 |
+
batch_size = hidden_states.shape[0]
|
296 |
+
timestep, embedded_timestep = self.adaln_single(
|
297 |
+
timestep.flatten(),
|
298 |
+
{"resolution": None, "aspect_ratio": None},
|
299 |
+
batch_size=batch_size,
|
300 |
+
hidden_dtype=hidden_states.dtype,
|
301 |
+
)
|
302 |
+
# Second dimension is 1 or number of tokens (if timestep_per_token)
|
303 |
+
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
304 |
+
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])
|
305 |
+
|
306 |
+
# 2. Blocks
|
307 |
+
if self.caption_projection is not None:
|
308 |
+
batch_size = hidden_states.shape[0]
|
309 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
310 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
311 |
+
|
312 |
+
for block in self.transformer_blocks:
|
313 |
+
if self.training and self.gradient_checkpointing:
|
314 |
+
|
315 |
+
def create_custom_forward(module, return_dict=None):
|
316 |
+
def custom_forward(*inputs):
|
317 |
+
if return_dict is not None:
|
318 |
+
return module(*inputs, return_dict=return_dict)
|
319 |
+
else:
|
320 |
+
return module(*inputs)
|
321 |
+
|
322 |
+
return custom_forward
|
323 |
+
|
324 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
325 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
326 |
+
create_custom_forward(block),
|
327 |
+
hidden_states,
|
328 |
+
freqs_cis,
|
329 |
+
attention_mask,
|
330 |
+
encoder_hidden_states,
|
331 |
+
encoder_attention_mask,
|
332 |
+
timestep,
|
333 |
+
cross_attention_kwargs,
|
334 |
+
class_labels,
|
335 |
+
**ckpt_kwargs,
|
336 |
+
)
|
337 |
+
else:
|
338 |
+
hidden_states = block(
|
339 |
+
hidden_states,
|
340 |
+
freqs_cis=freqs_cis,
|
341 |
+
attention_mask=attention_mask,
|
342 |
+
encoder_hidden_states=encoder_hidden_states,
|
343 |
+
encoder_attention_mask=encoder_attention_mask,
|
344 |
+
timestep=timestep,
|
345 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
346 |
+
class_labels=class_labels,
|
347 |
+
)
|
348 |
+
|
349 |
+
# 3. Output
|
350 |
+
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
351 |
+
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
352 |
+
hidden_states = self.norm_out(hidden_states)
|
353 |
+
# Modulation
|
354 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
355 |
+
hidden_states = self.proj_out(hidden_states)
|
356 |
+
if not return_dict:
|
357 |
+
return (hidden_states,)
|
358 |
+
|
359 |
+
return Transformer3DModelOutput(sample=hidden_states)
|
360 |
+
|
xora/pipelines/__init__.py
ADDED
File without changes
|
xora/pipelines/pipeline_video_pixart_alpha.py
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
|
2 |
+
import html
|
3 |
+
import inspect
|
4 |
+
import math
|
5 |
+
import re
|
6 |
+
import urllib.parse as ul
|
7 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
8 |
+
from abc import ABC, abstractmethod
|
9 |
+
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import Tensor
|
14 |
+
from diffusers.image_processor import VaeImageProcessor
|
15 |
+
from diffusers.models import AutoencoderKL
|
16 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
17 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
18 |
+
from diffusers.utils import (
|
19 |
+
BACKENDS_MAPPING,
|
20 |
+
deprecate,
|
21 |
+
is_bs4_available,
|
22 |
+
is_ftfy_available,
|
23 |
+
logging,
|
24 |
+
replace_example_docstring,
|
25 |
+
)
|
26 |
+
from diffusers.utils.torch_utils import randn_tensor
|
27 |
+
from einops import rearrange
|
28 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
29 |
+
|
30 |
+
from xora.models.transformers.transformer3d import Transformer3DModel
|
31 |
+
from xora.models.transformers.symmetric_patchifier import Patchifier
|
32 |
+
from xora.models.autoencoders.vae_encode import get_vae_size_scale_factor, vae_decode, vae_encode
|
33 |
+
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
34 |
+
from xora.schedulers.rf import TimestepShifter
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37 |
+
|
38 |
+
|
39 |
+
if is_bs4_available():
|
40 |
+
from bs4 import BeautifulSoup
|
41 |
+
|
42 |
+
if is_ftfy_available():
|
43 |
+
import ftfy
|
44 |
+
|
45 |
+
def retrieve_timesteps(
|
46 |
+
scheduler,
|
47 |
+
num_inference_steps: Optional[int] = None,
|
48 |
+
device: Optional[Union[str, torch.device]] = None,
|
49 |
+
timesteps: Optional[List[int]] = None,
|
50 |
+
**kwargs,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
54 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
scheduler (`SchedulerMixin`):
|
58 |
+
The scheduler to get timesteps from.
|
59 |
+
num_inference_steps (`int`):
|
60 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
61 |
+
`timesteps` must be `None`.
|
62 |
+
device (`str` or `torch.device`, *optional*):
|
63 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
64 |
+
timesteps (`List[int]`, *optional*):
|
65 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
66 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
67 |
+
must be `None`.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
71 |
+
second element is the number of inference steps.
|
72 |
+
"""
|
73 |
+
if timesteps is not None:
|
74 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
75 |
+
if not accepts_timesteps:
|
76 |
+
raise ValueError(
|
77 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
78 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
79 |
+
)
|
80 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
81 |
+
timesteps = scheduler.timesteps
|
82 |
+
num_inference_steps = len(timesteps)
|
83 |
+
else:
|
84 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
85 |
+
timesteps = scheduler.timesteps
|
86 |
+
return timesteps, num_inference_steps
|
87 |
+
|
88 |
+
|
89 |
+
class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
90 |
+
r"""
|
91 |
+
Pipeline for text-to-image generation using PixArt-Alpha.
|
92 |
+
|
93 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
94 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
95 |
+
|
96 |
+
Args:
|
97 |
+
vae ([`AutoencoderKL`]):
|
98 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
99 |
+
text_encoder ([`T5EncoderModel`]):
|
100 |
+
Frozen text-encoder. PixArt-Alpha uses
|
101 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
102 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
103 |
+
tokenizer (`T5Tokenizer`):
|
104 |
+
Tokenizer of class
|
105 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
106 |
+
transformer ([`Transformer2DModel`]):
|
107 |
+
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
|
108 |
+
scheduler ([`SchedulerMixin`]):
|
109 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
110 |
+
"""
|
111 |
+
|
112 |
+
bad_punct_regex = re.compile(
|
113 |
+
r"["
|
114 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
115 |
+
+ r"\)"
|
116 |
+
+ r"\("
|
117 |
+
+ r"\]"
|
118 |
+
+ r"\["
|
119 |
+
+ r"\}"
|
120 |
+
+ r"\{"
|
121 |
+
+ r"\|"
|
122 |
+
+ "\\"
|
123 |
+
+ r"\/"
|
124 |
+
+ r"\*"
|
125 |
+
+ r"]{1,}"
|
126 |
+
) # noqa
|
127 |
+
|
128 |
+
_optional_components = ["tokenizer", "text_encoder"]
|
129 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
130 |
+
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
tokenizer: T5Tokenizer,
|
134 |
+
text_encoder: T5EncoderModel,
|
135 |
+
vae: AutoencoderKL,
|
136 |
+
transformer: Transformer3DModel,
|
137 |
+
scheduler: DPMSolverMultistepScheduler,
|
138 |
+
patchifier: Patchifier,
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
|
142 |
+
self.register_modules(
|
143 |
+
tokenizer=tokenizer,
|
144 |
+
text_encoder=text_encoder,
|
145 |
+
vae=vae,
|
146 |
+
transformer=transformer,
|
147 |
+
scheduler=scheduler,
|
148 |
+
patchifier=patchifier,
|
149 |
+
)
|
150 |
+
|
151 |
+
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(self.vae)
|
152 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
153 |
+
|
154 |
+
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
|
155 |
+
def mask_text_embeddings(self, emb, mask):
|
156 |
+
if emb.shape[0] == 1:
|
157 |
+
keep_index = mask.sum().item()
|
158 |
+
return emb[:, :, :keep_index, :], keep_index
|
159 |
+
else:
|
160 |
+
masked_feature = emb * mask[:, None, :, None]
|
161 |
+
return masked_feature, emb.shape[2]
|
162 |
+
|
163 |
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
164 |
+
def encode_prompt(
|
165 |
+
self,
|
166 |
+
prompt: Union[str, List[str]],
|
167 |
+
do_classifier_free_guidance: bool = True,
|
168 |
+
negative_prompt: str = "",
|
169 |
+
num_images_per_prompt: int = 1,
|
170 |
+
device: Optional[torch.device] = None,
|
171 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
172 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
173 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
174 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
175 |
+
clean_caption: bool = False,
|
176 |
+
**kwargs,
|
177 |
+
):
|
178 |
+
r"""
|
179 |
+
Encodes the prompt into text encoder hidden states.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
prompt (`str` or `List[str]`, *optional*):
|
183 |
+
prompt to be encoded
|
184 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
185 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
186 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
187 |
+
PixArt-Alpha, this should be "".
|
188 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
189 |
+
whether to use classifier free guidance or not
|
190 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
191 |
+
number of images that should be generated per prompt
|
192 |
+
device: (`torch.device`, *optional*):
|
193 |
+
torch device to place the resulting embeddings on
|
194 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
195 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
196 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
197 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
198 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
199 |
+
string.
|
200 |
+
clean_caption (bool, defaults to `False`):
|
201 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
202 |
+
"""
|
203 |
+
|
204 |
+
if "mask_feature" in kwargs:
|
205 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
206 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
207 |
+
|
208 |
+
if device is None:
|
209 |
+
device = self._execution_device
|
210 |
+
|
211 |
+
if prompt is not None and isinstance(prompt, str):
|
212 |
+
batch_size = 1
|
213 |
+
elif prompt is not None and isinstance(prompt, list):
|
214 |
+
batch_size = len(prompt)
|
215 |
+
else:
|
216 |
+
batch_size = prompt_embeds.shape[0]
|
217 |
+
|
218 |
+
# See Section 3.1. of the paper.
|
219 |
+
# FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config
|
220 |
+
max_length = 128 # TPU supports only lengths multiple of 128
|
221 |
+
|
222 |
+
if prompt_embeds is None:
|
223 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
224 |
+
text_inputs = self.tokenizer(
|
225 |
+
prompt,
|
226 |
+
padding="max_length",
|
227 |
+
max_length=max_length,
|
228 |
+
truncation=True,
|
229 |
+
add_special_tokens=True,
|
230 |
+
return_tensors="pt",
|
231 |
+
)
|
232 |
+
text_input_ids = text_inputs.input_ids
|
233 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
234 |
+
|
235 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
236 |
+
text_input_ids, untruncated_ids
|
237 |
+
):
|
238 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
239 |
+
logger.warning(
|
240 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
241 |
+
f" {max_length} tokens: {removed_text}"
|
242 |
+
)
|
243 |
+
|
244 |
+
prompt_attention_mask = text_inputs.attention_mask
|
245 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
246 |
+
|
247 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
248 |
+
prompt_embeds = prompt_embeds[0]
|
249 |
+
|
250 |
+
if self.text_encoder is not None:
|
251 |
+
dtype = self.text_encoder.dtype
|
252 |
+
elif self.transformer is not None:
|
253 |
+
dtype = self.transformer.dtype
|
254 |
+
else:
|
255 |
+
dtype = None
|
256 |
+
|
257 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
258 |
+
|
259 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
260 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
261 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
262 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
263 |
+
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
|
264 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1)
|
265 |
+
|
266 |
+
# get unconditional embeddings for classifier free guidance
|
267 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
268 |
+
uncond_tokens = [negative_prompt] * batch_size
|
269 |
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
270 |
+
max_length = prompt_embeds.shape[1]
|
271 |
+
uncond_input = self.tokenizer(
|
272 |
+
uncond_tokens,
|
273 |
+
padding="max_length",
|
274 |
+
max_length=max_length,
|
275 |
+
truncation=True,
|
276 |
+
return_attention_mask=True,
|
277 |
+
add_special_tokens=True,
|
278 |
+
return_tensors="pt",
|
279 |
+
)
|
280 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
281 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
282 |
+
|
283 |
+
negative_prompt_embeds = self.text_encoder(
|
284 |
+
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
|
285 |
+
)
|
286 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
287 |
+
|
288 |
+
if do_classifier_free_guidance:
|
289 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
290 |
+
seq_len = negative_prompt_embeds.shape[1]
|
291 |
+
|
292 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
293 |
+
|
294 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
295 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
296 |
+
|
297 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_images_per_prompt)
|
298 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1)
|
299 |
+
else:
|
300 |
+
negative_prompt_embeds = None
|
301 |
+
negative_prompt_attention_mask = None
|
302 |
+
|
303 |
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
304 |
+
|
305 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
306 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
307 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
308 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
309 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
310 |
+
# and should be between [0, 1]
|
311 |
+
|
312 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
313 |
+
extra_step_kwargs = {}
|
314 |
+
if accepts_eta:
|
315 |
+
extra_step_kwargs["eta"] = eta
|
316 |
+
|
317 |
+
# check if the scheduler accepts generator
|
318 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
319 |
+
if accepts_generator:
|
320 |
+
extra_step_kwargs["generator"] = generator
|
321 |
+
return extra_step_kwargs
|
322 |
+
|
323 |
+
def check_inputs(
|
324 |
+
self,
|
325 |
+
prompt,
|
326 |
+
height,
|
327 |
+
width,
|
328 |
+
negative_prompt,
|
329 |
+
prompt_embeds=None,
|
330 |
+
negative_prompt_embeds=None,
|
331 |
+
prompt_attention_mask=None,
|
332 |
+
negative_prompt_attention_mask=None,
|
333 |
+
):
|
334 |
+
if height % 8 != 0 or width % 8 != 0:
|
335 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
336 |
+
|
337 |
+
if prompt is not None and prompt_embeds is not None:
|
338 |
+
raise ValueError(
|
339 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
340 |
+
" only forward one of the two."
|
341 |
+
)
|
342 |
+
elif prompt is None and prompt_embeds is None:
|
343 |
+
raise ValueError(
|
344 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
345 |
+
)
|
346 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
347 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
348 |
+
|
349 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
350 |
+
raise ValueError(
|
351 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
352 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
353 |
+
)
|
354 |
+
|
355 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
356 |
+
raise ValueError(
|
357 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
358 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
359 |
+
)
|
360 |
+
|
361 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
362 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
363 |
+
|
364 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
365 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
366 |
+
|
367 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
368 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
369 |
+
raise ValueError(
|
370 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
371 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
372 |
+
f" {negative_prompt_embeds.shape}."
|
373 |
+
)
|
374 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
375 |
+
raise ValueError(
|
376 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
377 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
378 |
+
f" {negative_prompt_attention_mask.shape}."
|
379 |
+
)
|
380 |
+
|
381 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
382 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
383 |
+
if clean_caption and not is_bs4_available():
|
384 |
+
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
385 |
+
logger.warn("Setting `clean_caption` to False...")
|
386 |
+
clean_caption = False
|
387 |
+
|
388 |
+
if clean_caption and not is_ftfy_available():
|
389 |
+
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
390 |
+
logger.warn("Setting `clean_caption` to False...")
|
391 |
+
clean_caption = False
|
392 |
+
|
393 |
+
if not isinstance(text, (tuple, list)):
|
394 |
+
text = [text]
|
395 |
+
|
396 |
+
def process(text: str):
|
397 |
+
if clean_caption:
|
398 |
+
text = self._clean_caption(text)
|
399 |
+
text = self._clean_caption(text)
|
400 |
+
else:
|
401 |
+
text = text.lower().strip()
|
402 |
+
return text
|
403 |
+
|
404 |
+
return [process(t) for t in text]
|
405 |
+
|
406 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
407 |
+
def _clean_caption(self, caption):
|
408 |
+
caption = str(caption)
|
409 |
+
caption = ul.unquote_plus(caption)
|
410 |
+
caption = caption.strip().lower()
|
411 |
+
caption = re.sub("<person>", "person", caption)
|
412 |
+
# urls:
|
413 |
+
caption = re.sub(
|
414 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
415 |
+
"",
|
416 |
+
caption,
|
417 |
+
) # regex for urls
|
418 |
+
caption = re.sub(
|
419 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
420 |
+
"",
|
421 |
+
caption,
|
422 |
+
) # regex for urls
|
423 |
+
# html:
|
424 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
425 |
+
|
426 |
+
# @<nickname>
|
427 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
428 |
+
|
429 |
+
# 31C0—31EF CJK Strokes
|
430 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
431 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
432 |
+
# 3300—33FF CJK Compatibility
|
433 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
434 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
435 |
+
# 4E00—9FFF CJK Unified Ideographs
|
436 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
437 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
438 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
439 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
440 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
441 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
442 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
443 |
+
#######################################################
|
444 |
+
|
445 |
+
# все виды тире / all types of dash --> "-"
|
446 |
+
caption = re.sub(
|
447 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
448 |
+
"-",
|
449 |
+
caption,
|
450 |
+
)
|
451 |
+
|
452 |
+
# кавычки к одному стандарту
|
453 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
454 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
455 |
+
|
456 |
+
# "
|
457 |
+
caption = re.sub(r""?", "", caption)
|
458 |
+
# &
|
459 |
+
caption = re.sub(r"&", "", caption)
|
460 |
+
|
461 |
+
# ip adresses:
|
462 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
463 |
+
|
464 |
+
# article ids:
|
465 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
466 |
+
|
467 |
+
# \n
|
468 |
+
caption = re.sub(r"\\n", " ", caption)
|
469 |
+
|
470 |
+
# "#123"
|
471 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
472 |
+
# "#12345.."
|
473 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
474 |
+
# "123456.."
|
475 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
476 |
+
# filenames:
|
477 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
478 |
+
|
479 |
+
#
|
480 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
481 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
482 |
+
|
483 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
484 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
485 |
+
|
486 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
487 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
488 |
+
if len(re.findall(regex2, caption)) > 3:
|
489 |
+
caption = re.sub(regex2, " ", caption)
|
490 |
+
|
491 |
+
caption = ftfy.fix_text(caption)
|
492 |
+
caption = html.unescape(html.unescape(caption))
|
493 |
+
|
494 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
495 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
496 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
497 |
+
|
498 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
499 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
500 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
501 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
502 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
503 |
+
|
504 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
505 |
+
|
506 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
507 |
+
|
508 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
509 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
510 |
+
caption = re.sub(r"\s+", " ", caption)
|
511 |
+
|
512 |
+
caption.strip()
|
513 |
+
|
514 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
515 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
516 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
517 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
518 |
+
|
519 |
+
return caption.strip()
|
520 |
+
|
521 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
522 |
+
def prepare_latents(
|
523 |
+
self,
|
524 |
+
batch_size,
|
525 |
+
num_latent_channels,
|
526 |
+
num_patches,
|
527 |
+
dtype,
|
528 |
+
device,
|
529 |
+
generator,
|
530 |
+
latents=None,
|
531 |
+
):
|
532 |
+
shape = (
|
533 |
+
batch_size,
|
534 |
+
num_patches // math.prod(self.patchifier.patch_size),
|
535 |
+
num_latent_channels,
|
536 |
+
)
|
537 |
+
|
538 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
539 |
+
raise ValueError(
|
540 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
541 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
542 |
+
)
|
543 |
+
|
544 |
+
if latents is None:
|
545 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
546 |
+
else:
|
547 |
+
latents = latents.to(device)
|
548 |
+
|
549 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
550 |
+
latents = latents * self.scheduler.init_noise_sigma
|
551 |
+
return latents
|
552 |
+
|
553 |
+
@staticmethod
|
554 |
+
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
|
555 |
+
"""Returns binned height and width."""
|
556 |
+
ar = float(height / width)
|
557 |
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
558 |
+
default_hw = ratios[closest_ratio]
|
559 |
+
return int(default_hw[0]), int(default_hw[1])
|
560 |
+
|
561 |
+
@staticmethod
|
562 |
+
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
|
563 |
+
n_frames, orig_height, orig_width = samples.shape[-3:]
|
564 |
+
|
565 |
+
# Check if resizing is needed
|
566 |
+
if orig_height != new_height or orig_width != new_width:
|
567 |
+
ratio = max(new_height / orig_height, new_width / orig_width)
|
568 |
+
resized_width = int(orig_width * ratio)
|
569 |
+
resized_height = int(orig_height * ratio)
|
570 |
+
|
571 |
+
# Resize
|
572 |
+
samples = rearrange(samples, "b c n h w -> (b n) c h w")
|
573 |
+
samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False)
|
574 |
+
samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames)
|
575 |
+
|
576 |
+
# Center Crop
|
577 |
+
start_x = (resized_width - new_width) // 2
|
578 |
+
end_x = start_x + new_width
|
579 |
+
start_y = (resized_height - new_height) // 2
|
580 |
+
end_y = start_y + new_height
|
581 |
+
samples = samples[..., start_y:end_y, start_x:end_x]
|
582 |
+
|
583 |
+
return samples
|
584 |
+
|
585 |
+
|
586 |
+
@torch.no_grad()
|
587 |
+
def __call__(
|
588 |
+
self,
|
589 |
+
height: int,
|
590 |
+
width: int,
|
591 |
+
num_frames: int,
|
592 |
+
frame_rate: float,
|
593 |
+
prompt: Union[str, List[str]] = None,
|
594 |
+
negative_prompt: str = "",
|
595 |
+
num_inference_steps: int = 20,
|
596 |
+
timesteps: List[int] = None,
|
597 |
+
guidance_scale: float = 4.5,
|
598 |
+
num_images_per_prompt: Optional[int] = 1,
|
599 |
+
eta: float = 0.0,
|
600 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
601 |
+
latents: Optional[torch.FloatTensor] = None,
|
602 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
603 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
604 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
605 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
606 |
+
output_type: Optional[str] = "pil",
|
607 |
+
return_dict: bool = True,
|
608 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
609 |
+
clean_caption: bool = True,
|
610 |
+
**kwargs,
|
611 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
612 |
+
"""
|
613 |
+
Function invoked when calling the pipeline for generation.
|
614 |
+
|
615 |
+
Args:
|
616 |
+
prompt (`str` or `List[str]`, *optional*):
|
617 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
618 |
+
instead.
|
619 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
620 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
621 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
622 |
+
less than `1`).
|
623 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
624 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
625 |
+
expense of slower inference.
|
626 |
+
timesteps (`List[int]`, *optional*):
|
627 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
628 |
+
timesteps are used. Must be in descending order.
|
629 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
630 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
631 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
632 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
633 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
634 |
+
usually at the expense of lower image quality.
|
635 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
636 |
+
The number of images to generate per prompt.
|
637 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
638 |
+
The height in pixels of the generated image.
|
639 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
640 |
+
The width in pixels of the generated image.
|
641 |
+
eta (`float`, *optional*, defaults to 0.0):
|
642 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
643 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
644 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
645 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
646 |
+
to make generation deterministic.
|
647 |
+
latents (`torch.FloatTensor`, *optional*):
|
648 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
649 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
650 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
651 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
652 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
653 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
654 |
+
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
655 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
656 |
+
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
|
657 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
658 |
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
659 |
+
Pre-generated attention mask for negative text embeddings.
|
660 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
661 |
+
The output format of the generate image. Choose between
|
662 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
663 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
664 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
665 |
+
callback_on_step_end (`Callable`, *optional*):
|
666 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
667 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
668 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
669 |
+
`callback_on_step_end_tensor_inputs`.
|
670 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
671 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
672 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
673 |
+
prompt.
|
674 |
+
use_resolution_binning (`bool` defaults to `True`):
|
675 |
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
676 |
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
677 |
+
the requested resolution. Useful for generating non-square images.
|
678 |
+
|
679 |
+
Examples:
|
680 |
+
|
681 |
+
Returns:
|
682 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
683 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
684 |
+
returned where the first element is a list with the generated images
|
685 |
+
"""
|
686 |
+
if "mask_feature" in kwargs:
|
687 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
688 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
689 |
+
|
690 |
+
is_video = kwargs.get("is_video", False)
|
691 |
+
self.check_inputs(
|
692 |
+
prompt,
|
693 |
+
height,
|
694 |
+
width,
|
695 |
+
negative_prompt,
|
696 |
+
prompt_embeds,
|
697 |
+
negative_prompt_embeds,
|
698 |
+
prompt_attention_mask,
|
699 |
+
negative_prompt_attention_mask,
|
700 |
+
)
|
701 |
+
|
702 |
+
# 2. Default height and width to transformer
|
703 |
+
if prompt is not None and isinstance(prompt, str):
|
704 |
+
batch_size = 1
|
705 |
+
elif prompt is not None and isinstance(prompt, list):
|
706 |
+
batch_size = len(prompt)
|
707 |
+
else:
|
708 |
+
batch_size = prompt_embeds.shape[0]
|
709 |
+
|
710 |
+
device = self._execution_device
|
711 |
+
|
712 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
713 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
714 |
+
# corresponds to doing no classifier free guidance.
|
715 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
716 |
+
|
717 |
+
# 3. Encode input prompt
|
718 |
+
(
|
719 |
+
prompt_embeds,
|
720 |
+
prompt_attention_mask,
|
721 |
+
negative_prompt_embeds,
|
722 |
+
negative_prompt_attention_mask,
|
723 |
+
) = self.encode_prompt(
|
724 |
+
prompt,
|
725 |
+
do_classifier_free_guidance,
|
726 |
+
negative_prompt=negative_prompt,
|
727 |
+
num_images_per_prompt=num_images_per_prompt,
|
728 |
+
device=device,
|
729 |
+
prompt_embeds=prompt_embeds,
|
730 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
731 |
+
prompt_attention_mask=prompt_attention_mask,
|
732 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
733 |
+
clean_caption=clean_caption,
|
734 |
+
)
|
735 |
+
if do_classifier_free_guidance:
|
736 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
737 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
738 |
+
|
739 |
+
# 4. Prepare latents.
|
740 |
+
self.video_scale_factor = self.video_scale_factor if is_video else 1
|
741 |
+
latent_height = height // self.vae_scale_factor
|
742 |
+
latent_width = width // self.vae_scale_factor
|
743 |
+
latent_num_frames = num_frames // self.video_scale_factor
|
744 |
+
if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
|
745 |
+
latent_num_frames += 1
|
746 |
+
latent_frame_rate = frame_rate / self.video_scale_factor
|
747 |
+
num_latent_patches = latent_height * latent_width * latent_num_frames
|
748 |
+
latents = self.prepare_latents(
|
749 |
+
batch_size=batch_size * num_images_per_prompt,
|
750 |
+
num_latent_channels=self.transformer.config.in_channels,
|
751 |
+
num_patches=num_latent_patches,
|
752 |
+
dtype=prompt_embeds.dtype,
|
753 |
+
device=device,
|
754 |
+
generator=generator,
|
755 |
+
)
|
756 |
+
|
757 |
+
# 5. Prepare timesteps
|
758 |
+
retrieve_timesteps_kwargs = {}
|
759 |
+
if isinstance(self.scheduler, TimestepShifter):
|
760 |
+
retrieve_timesteps_kwargs["samples"] = latents
|
761 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
762 |
+
self.scheduler, num_inference_steps, device, timesteps, **retrieve_timesteps_kwargs
|
763 |
+
)
|
764 |
+
|
765 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
766 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
767 |
+
|
768 |
+
# 7. Denoising loop
|
769 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
770 |
+
|
771 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
772 |
+
for i, t in enumerate(timesteps):
|
773 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
774 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
775 |
+
|
776 |
+
latent_frame_rates = (
|
777 |
+
torch.ones(latent_model_input.shape[0], 1, device=latent_model_input.device) * latent_frame_rate
|
778 |
+
)
|
779 |
+
|
780 |
+
current_timestep = t
|
781 |
+
if not torch.is_tensor(current_timestep):
|
782 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
783 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
784 |
+
is_mps = latent_model_input.device.type == "mps"
|
785 |
+
if isinstance(current_timestep, float):
|
786 |
+
dtype = torch.float32 if is_mps else torch.float64
|
787 |
+
else:
|
788 |
+
dtype = torch.int32 if is_mps else torch.int64
|
789 |
+
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
790 |
+
elif len(current_timestep.shape) == 0:
|
791 |
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
792 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
793 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
794 |
+
scale_grid = (
|
795 |
+
(1 / latent_frame_rates, self.vae_scale_factor, self.vae_scale_factor)
|
796 |
+
if self.transformer.use_rope
|
797 |
+
else None
|
798 |
+
)
|
799 |
+
indices_grid = self.patchifier.get_grid(
|
800 |
+
orig_num_frames=latent_num_frames,
|
801 |
+
orig_height=latent_height,
|
802 |
+
orig_width=latent_width,
|
803 |
+
batch_size=latent_model_input.shape[0],
|
804 |
+
scale_grid=scale_grid,
|
805 |
+
device=latents.device,
|
806 |
+
)
|
807 |
+
|
808 |
+
# predict noise model_output
|
809 |
+
noise_pred = self.transformer(
|
810 |
+
latent_model_input.to(self.transformer.dtype),
|
811 |
+
indices_grid,
|
812 |
+
encoder_hidden_states=prompt_embeds.to(self.transformer.dtype),
|
813 |
+
encoder_attention_mask=prompt_attention_mask,
|
814 |
+
timestep=current_timestep,
|
815 |
+
return_dict=False,
|
816 |
+
)[0]
|
817 |
+
|
818 |
+
# perform guidance
|
819 |
+
if do_classifier_free_guidance:
|
820 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
821 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
822 |
+
|
823 |
+
# learned sigma
|
824 |
+
if self.transformer.config.out_channels // 2 == self.transformer.config.in_channels:
|
825 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
826 |
+
|
827 |
+
# compute previous image: x_t -> x_t-1
|
828 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
829 |
+
|
830 |
+
# call the callback, if provided
|
831 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
832 |
+
progress_bar.update()
|
833 |
+
|
834 |
+
if callback_on_step_end is not None:
|
835 |
+
callback_on_step_end(self, i, t, {})
|
836 |
+
|
837 |
+
latents = self.patchifier.unpatchify(
|
838 |
+
latents=latents,
|
839 |
+
output_height=latent_height,
|
840 |
+
output_width=latent_width,
|
841 |
+
output_num_frames=latent_num_frames,
|
842 |
+
out_channels=self.transformer.in_channels // math.prod(self.patchifier.patch_size),
|
843 |
+
)
|
844 |
+
if output_type != "latent":
|
845 |
+
image = vae_decode(
|
846 |
+
latents, self.vae, is_video, vae_per_channel_normalize=kwargs["vae_per_channel_normalize"]
|
847 |
+
)
|
848 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
849 |
+
|
850 |
+
else:
|
851 |
+
image = latents
|
852 |
+
|
853 |
+
# Offload all models
|
854 |
+
self.maybe_free_model_hooks()
|
855 |
+
|
856 |
+
if not return_dict:
|
857 |
+
return (image,)
|
858 |
+
|
859 |
+
return ImagePipelineOutput(images=image)
|
xora/schedulers/__init__.py
ADDED
File without changes
|
xora/schedulers/rf.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Callable, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
9 |
+
from diffusers.utils import BaseOutput
|
10 |
+
from torch import Tensor
|
11 |
+
|
12 |
+
from xora.utils.torch_utils import append_dims
|
13 |
+
|
14 |
+
|
15 |
+
def simple_diffusion_resolution_dependent_timestep_shift(
|
16 |
+
samples: Tensor,
|
17 |
+
timesteps: Tensor,
|
18 |
+
n: int = 32 * 32,
|
19 |
+
) -> Tensor:
|
20 |
+
if len(samples.shape) == 3:
|
21 |
+
_, m, _ = samples.shape
|
22 |
+
elif len(samples.shape) in [4, 5]:
|
23 |
+
m = math.prod(samples.shape[2:])
|
24 |
+
else:
|
25 |
+
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
|
26 |
+
snr = (timesteps / (1 - timesteps)) ** 2
|
27 |
+
shift_snr = torch.log(snr) + 2 * math.log(m / n)
|
28 |
+
shifted_timesteps = torch.sigmoid(0.5 * shift_snr)
|
29 |
+
|
30 |
+
return shifted_timesteps
|
31 |
+
|
32 |
+
|
33 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
34 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
35 |
+
|
36 |
+
|
37 |
+
def get_normal_shift(
|
38 |
+
n_tokens: int,
|
39 |
+
min_tokens: int = 1024,
|
40 |
+
max_tokens: int = 4096,
|
41 |
+
min_shift: float = 0.95,
|
42 |
+
max_shift: float = 2.05,
|
43 |
+
) -> Callable[[float], float]:
|
44 |
+
m = (max_shift - min_shift) / (max_tokens - min_tokens)
|
45 |
+
b = min_shift - m * min_tokens
|
46 |
+
return m * n_tokens + b
|
47 |
+
|
48 |
+
|
49 |
+
def sd3_resolution_dependent_timestep_shift(samples: Tensor, timesteps: Tensor) -> Tensor:
|
50 |
+
"""
|
51 |
+
Shifts the timestep schedule as a function of the generated resolution.
|
52 |
+
|
53 |
+
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
|
54 |
+
For more details: https://arxiv.org/pdf/2403.03206
|
55 |
+
|
56 |
+
In Flux they later propose a more dynamic resolution dependent timestep shift, see:
|
57 |
+
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66
|
58 |
+
|
59 |
+
|
60 |
+
Args:
|
61 |
+
samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or
|
62 |
+
(batch_size, channels, frame, height, width).
|
63 |
+
timesteps (Tensor): A batch of timesteps with shape (batch_size,).
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
Tensor: The shifted timesteps.
|
67 |
+
"""
|
68 |
+
if len(samples.shape) == 3:
|
69 |
+
_, m, _ = samples.shape
|
70 |
+
elif len(samples.shape) in [4, 5]:
|
71 |
+
m = math.prod(samples.shape[2:])
|
72 |
+
else:
|
73 |
+
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
|
74 |
+
|
75 |
+
shift = get_normal_shift(m)
|
76 |
+
return time_shift(shift, 1, timesteps)
|
77 |
+
|
78 |
+
|
79 |
+
class TimestepShifter(ABC):
|
80 |
+
@abstractmethod
|
81 |
+
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
|
82 |
+
pass
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class RectifiedFlowSchedulerOutput(BaseOutput):
|
87 |
+
"""
|
88 |
+
Output class for the scheduler's step function output.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
92 |
+
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
93 |
+
denoising loop.
|
94 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
95 |
+
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
|
96 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
97 |
+
"""
|
98 |
+
|
99 |
+
prev_sample: torch.FloatTensor
|
100 |
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
101 |
+
|
102 |
+
|
103 |
+
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
|
104 |
+
order = 1
|
105 |
+
|
106 |
+
@register_to_config
|
107 |
+
def __init__(self, num_train_timesteps=1000, shifting: Optional[str] = None, base_resolution: int = 32**2):
|
108 |
+
super().__init__()
|
109 |
+
self.init_noise_sigma = 1.0
|
110 |
+
self.num_inference_steps = None
|
111 |
+
self.timesteps = self.sigmas = torch.linspace(1, 1 / num_train_timesteps, num_train_timesteps)
|
112 |
+
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
|
113 |
+
self.shifting = shifting
|
114 |
+
self.base_resolution = base_resolution
|
115 |
+
|
116 |
+
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
|
117 |
+
if self.shifting == "SD3":
|
118 |
+
return sd3_resolution_dependent_timestep_shift(samples, timesteps)
|
119 |
+
elif self.shifting == "SimpleDiffusion":
|
120 |
+
return simple_diffusion_resolution_dependent_timestep_shift(samples, timesteps, self.base_resolution)
|
121 |
+
return timesteps
|
122 |
+
|
123 |
+
def set_timesteps(self, num_inference_steps: int, samples: Tensor, device: Union[str, torch.device] = None):
|
124 |
+
"""
|
125 |
+
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
num_inference_steps (`int`): The number of diffusion steps used when generating samples.
|
129 |
+
samples (`Tensor`): A batch of samples with shape.
|
130 |
+
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
|
131 |
+
"""
|
132 |
+
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
|
133 |
+
timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to(device)
|
134 |
+
self.timesteps = self.shift_timesteps(samples, timesteps)
|
135 |
+
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
|
136 |
+
self.num_inference_steps = num_inference_steps
|
137 |
+
self.sigmas = self.timesteps
|
138 |
+
|
139 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
140 |
+
# pylint: disable=unused-argument
|
141 |
+
"""
|
142 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
143 |
+
current timestep.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
sample (`torch.FloatTensor`): input sample
|
147 |
+
timestep (`int`, optional): current timestep
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
`torch.FloatTensor`: scaled input sample
|
151 |
+
"""
|
152 |
+
return sample
|
153 |
+
|
154 |
+
def step(
|
155 |
+
self,
|
156 |
+
model_output: torch.FloatTensor,
|
157 |
+
timestep: torch.FloatTensor,
|
158 |
+
sample: torch.FloatTensor,
|
159 |
+
eta: float = 0.0,
|
160 |
+
use_clipped_model_output: bool = False,
|
161 |
+
generator=None,
|
162 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
163 |
+
return_dict: bool = True,
|
164 |
+
) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
|
165 |
+
# pylint: disable=unused-argument
|
166 |
+
"""
|
167 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
168 |
+
process from the learned model outputs (most often the predicted noise).
|
169 |
+
|
170 |
+
Args:
|
171 |
+
model_output (`torch.FloatTensor`):
|
172 |
+
The direct output from learned diffusion model.
|
173 |
+
timestep (`float`):
|
174 |
+
The current discrete timestep in the diffusion chain.
|
175 |
+
sample (`torch.FloatTensor`):
|
176 |
+
A current instance of a sample created by the diffusion process.
|
177 |
+
eta (`float`):
|
178 |
+
The weight of noise for added noise in diffusion step.
|
179 |
+
use_clipped_model_output (`bool`, defaults to `False`):
|
180 |
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
181 |
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
182 |
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
183 |
+
`use_clipped_model_output` has no effect.
|
184 |
+
generator (`torch.Generator`, *optional*):
|
185 |
+
A random number generator.
|
186 |
+
variance_noise (`torch.FloatTensor`):
|
187 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
188 |
+
itself. Useful for methods such as [`CycleDiffusion`].
|
189 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
190 |
+
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
|
194 |
+
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
|
195 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
196 |
+
"""
|
197 |
+
if self.num_inference_steps is None:
|
198 |
+
raise ValueError(
|
199 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
200 |
+
)
|
201 |
+
|
202 |
+
current_index = (self.timesteps - timestep).abs().argmin()
|
203 |
+
dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0))
|
204 |
+
|
205 |
+
prev_sample = sample - dt * model_output
|
206 |
+
|
207 |
+
if not return_dict:
|
208 |
+
return (prev_sample,)
|
209 |
+
|
210 |
+
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
|
211 |
+
|
212 |
+
def add_noise(
|
213 |
+
self,
|
214 |
+
original_samples: torch.FloatTensor,
|
215 |
+
noise: torch.FloatTensor,
|
216 |
+
timesteps: torch.FloatTensor,
|
217 |
+
) -> torch.FloatTensor:
|
218 |
+
sigmas = timesteps
|
219 |
+
sigmas = append_dims(sigmas, original_samples.ndim)
|
220 |
+
alphas = 1 - sigmas
|
221 |
+
noisy_samples = alphas * original_samples + sigmas * noise
|
222 |
+
return noisy_samples
|
xora/utils/__init__.py
ADDED
File without changes
|
xora/utils/torch_utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
|
4 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
5 |
+
dims_to_append = target_dims - x.ndim
|
6 |
+
if dims_to_append < 0:
|
7 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
8 |
+
elif dims_to_append == 0:
|
9 |
+
return x
|
10 |
+
return x[(...,) + (None,) * dims_to_append]
|