File size: 4,179 Bytes
90c1221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import onnxruntime as ort


def convert_pad_shape(pad_shape):
    layer = pad_shape[::-1]
    pad_shape = [item for sublist in layer for item in sublist]
    return pad_shape


def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = np.arange(max_length, dtype=length.dtype)
    return np.expand_dims(x, 0) < np.expand_dims(length, 1)


def generate_path(duration, mask):
    """
    duration: [b, 1, t_x]
    mask: [b, 1, t_y, t_x]
    """

    b, _, t_y, t_x = mask.shape
    cum_duration = np.cumsum(duration, -1)

    cum_duration_flat = cum_duration.reshape(b * t_x)
    path = sequence_mask(cum_duration_flat, t_y)
    path = path.reshape(b, t_x, t_y)
    path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1]
    path = np.expand_dims(path, 1).transpose(0, 1, 3, 2)
    return path


class OnnxInferenceSession:
    def __init__(self, path, Providers=["CPUExecutionProvider"]):
        self.enc = ort.InferenceSession(path["enc"], providers=Providers)
        self.emb_g = ort.InferenceSession(path["emb_g"], providers=Providers)
        self.dp = ort.InferenceSession(path["dp"], providers=Providers)
        self.sdp = ort.InferenceSession(path["sdp"], providers=Providers)
        self.flow = ort.InferenceSession(path["flow"], providers=Providers)
        self.dec = ort.InferenceSession(path["dec"], providers=Providers)

    def __call__(
        self,
        seq,
        tone,
        language,
        bert_zh,
        bert_jp,
        bert_en,
        sid,
        seed=114514,
        seq_noise_scale=0.8,
        sdp_noise_scale=0.6,
        length_scale=1.0,
        sdp_ratio=0.0,
    ):
        if seq.ndim == 1:
            seq = np.expand_dims(seq, 0)
        if tone.ndim == 1:
            tone = np.expand_dims(tone, 0)
        if language.ndim == 1:
            language = np.expand_dims(language, 0)
        assert (seq.ndim == 2, tone.ndim == 2, language.ndim == 2)
        g = self.emb_g.run(
            None,
            {
                "sid": sid.astype(np.int64),
            },
        )[0]
        g = np.expand_dims(g, -1)
        enc_rtn = self.enc.run(
            None,
            {
                "x": seq.astype(np.int64),
                "t": tone.astype(np.int64),
                "language": language.astype(np.int64),
                "bert_0": bert_zh.astype(np.float32),
                "bert_1": bert_jp.astype(np.float32),
                "bert_2": bert_en.astype(np.float32),
                "g": g.astype(np.float32),
            },
        )
        x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3]
        np.random.seed(seed)
        zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale
        logw = self.sdp.run(
            None, {"x": x, "x_mask": x_mask, "zin": zinput.astype(np.float32), "g": g}
        )[0] * (sdp_ratio) + self.dp.run(None, {"x": x, "x_mask": x_mask, "g": g})[
            0
        ] * (
            1 - sdp_ratio
        )
        w = np.exp(logw) * x_mask * length_scale
        w_ceil = np.ceil(w)
        y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype(
            np.int64
        )
        y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1)
        attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1)
        attn = generate_path(w_ceil, attn_mask)
        m_p = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1)).transpose(
            0, 2, 1
        )  # [b, t', t], [b, t, d] -> [b, d, t']
        logs_p = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1)).transpose(
            0, 2, 1
        )  # [b, t', t], [b, t, d] -> [b, d, t']

        z_p = (
            m_p
            + np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2])
            * np.exp(logs_p)
            * seq_noise_scale
        )

        z = self.flow.run(
            None,
            {
                "z_p": z_p.astype(np.float32),
                "y_mask": y_mask.astype(np.float32),
                "g": g,
            },
        )[0]

        return self.dec.run(None, {"z_in": z.astype(np.float32), "g": g})[0]