KatGaw commited on
Commit
f644970
·
1 Parent(s): 152c87a
Files changed (1) hide show
  1. app.py +25 -101
app.py CHANGED
@@ -5,112 +5,36 @@ from tools import sentiment_analysis_util
5
  import numpy as np
6
  from dotenv import load_dotenv
7
  import os
 
 
8
 
9
- st.set_page_config(page_title="LangChain Agent", layout="wide")
10
- load_dotenv()
11
- OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
12
 
13
- llm = ChatOpenAI(model="gpt-3.5-turbo")
 
 
 
14
 
15
- from langchain_core.runnables import RunnableConfig
 
 
16
 
17
- st.title("💬 ExpressMood")
 
 
 
 
 
18
 
19
- #@st.cache_resource
20
- if "chat_history" not in st.session_state:
21
- st.session_state["messages"] = [{"role":"system", "content":"""
22
- You are a sentiment analysis expert. Answer all questions related to the topic. Say I don't know if you don't know.
23
- """}]
24
-
25
- st.image('el_pic.png')
26
-
27
- sideb=st.sidebar
28
- with st.sidebar:
29
- prompt=st.text_input("Enter topic for sentiment analysis: ")
30
-
31
- check1=sideb.button(f"analyze {prompt}")
32
-
33
- if check1:
34
- # Add user message to chat history
35
  st.session_state.messages.append({"role": "user", "content": prompt})
36
- # Display user message in chat message container
37
- with st.chat_message("user"):
38
- st.markdown(prompt)
39
-
40
- # ========================== Sentiment analysis
41
- #Perform sentiment analysis on the cryptocurrency news & predict dominant sentiment along with plotting the sentiment breakdown chart
42
- # Downloading from reddit
43
-
44
- # Downloading from alpaca
45
- if len(prompt.split(' '))<2:
46
- print('here')
47
- st.write('I am analyzing Google News ...')
48
- news_articles = sentiment_analysis_util.fetch_news(str(prompt))
49
- st.write('Now, I am analyzing Reddit ...')
50
- reddit_news_articles=sentiment_analysis_util.fetch_reddit_news(prompt)
51
- analysis_results = []
52
-
53
- #Perform sentiment analysis for each product review
54
- if len(prompt.split(' '))<2:
55
- print('here')
56
- for article in news_articles:
57
- if prompt.lower()[0:6] in article['News_Article'].lower():
58
- sentiment_analysis_result = sentiment_analysis_util.analyze_sentiment(article['News_Article'])
59
-
60
- # Display sentiment analysis results
61
- #print(f'News Article: {sentiment_analysis_result["News_Article"]} : Sentiment: {sentiment_analysis_result["Sentiment"]}', '\n')
62
 
63
- result = {
64
- 'News_Article': sentiment_analysis_result["News_Article"],
65
- 'Sentiment': sentiment_analysis_result["Sentiment"][0]['label'],
66
- 'Index': sentiment_analysis_result["Sentiment"][0]['score'],
67
- 'URL': article['URL']
68
- }
69
-
70
- analysis_results.append(result)
71
-
72
- articles_url=[]
73
- for article in reddit_news_articles:
74
- if prompt.lower()[0:6] in article.lower():
75
- sentiment_analysis_result_reddit = sentiment_analysis_util.analyze_sentiment(article)
76
-
77
- # Display sentiment analysis results
78
- #print(f'News Article: {sentiment_analysis_result_reddit["News_Article"]} : Sentiment: {sentiment_analysis_result_reddit["Sentiment"]}', '\n')
79
-
80
- result = {
81
- 'News_Article': sentiment_analysis_result_reddit["News_Article"],
82
- 'Index':np.round(sentiment_analysis_result_reddit["Sentiment"][0]['score'],2)
83
- }
84
- analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10]))))
85
- #pd.DataFrame(analysis_results).to_csv('analysis_results.csv')
86
-
87
- #Generate summarized message rationalize dominant sentiment
88
- summary = sentiment_analysis_util.generate_summary_of_sentiment(analysis_results) #, dominant_sentiment)
89
- st.chat_message("assistant").write((summary))
90
- st.session_state.messages.append({"role": "assistant", "content": summary})
91
- #answers=np.append(res["messages"][-1].content,summary)
92
-
93
- client = OpenAI(api_key=OPENAI_API_KEY)
94
-
95
- if "openai_model" not in st.session_state:
96
- st.session_state["openai_model"] = "gpt-3.5-turbo"
97
-
98
- if prompt := st.chat_input("Any other questions? "):
99
- # Add user message to chat history
100
- st.session_state.messages.append({"role": "user", "content": prompt})
101
- # Display user message in chat message container
102
- with st.chat_message("user"):
103
- st.markdown(prompt)
104
- # Display assistant response in chat message container
105
- with st.chat_message("assistant"):
106
- stream = client.chat.completions.create(
107
- model=st.session_state["openai_model"],
108
- messages=[
109
- {"role": m["role"], "content": m["content"]}
110
- for m in st.session_state.messages
111
- ],
112
- stream=True,
113
- )
114
- response = st.write_stream(stream)
115
- st.session_state.messages.append({"role": "assistant", "content": response})
116
 
 
 
 
 
5
  import numpy as np
6
  from dotenv import load_dotenv
7
  import os
8
+ st.title("💬 Chatbot")
9
+ st.caption("")
10
 
 
 
 
11
 
12
+ openai_api_key = os.environ["OPENAI_API_KEY"]
13
+ # Initialize session state for storing messages if it doesn't already exist
14
+ if "messages" not in st.session_state:
15
+ st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
16
 
17
+ # Display all previous messages
18
+ for msg in st.session_state.messages:
19
+ st.chat_message(msg["role"]).write(msg["content"])
20
 
21
+ # Input for new prompts
22
+ prompt = st.chat_input("Enter your question:")
23
+ if prompt:
24
+ if not openai_api_key:
25
+ st.error("No OpenAI API key found. Please set the OPENAI_API_KEY environment variable.")
26
+ st.stop()
27
 
28
+ # Append the new user message to session state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  st.session_state.messages.append({"role": "user", "content": prompt})
30
+ st.chat_message("user").write(prompt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ # Use a spinner to indicate that the model is generating a response
33
+ with st.spinner('Thinking...'):
34
+ client = OpenAI(api_key=openai_api_key)
35
+ response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
36
+ msg = response.choices[0].message.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ # Append and display the assistant's response
39
+ st.session_state.messages.append({"role": "assistant", "content": msg})
40
+ st.chat_message("assistant").write(msg)