Spaces:
Sleeping
Sleeping
File size: 6,283 Bytes
b47040f 81cff83 b47040f 4ff5abb b47040f 81cff83 b47040f 81cff83 b47040f 71a31cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit as st
import tempfile
import logging
from typing import List
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "meta-llama/Meta-Llama-3.1-8B"
@st.cache_resource
def load_embeddings():
"""Load and cache the embedding model."""
try:
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
st.error("Failed to load the embedding model. Please try again later.")
return None
@st.cache_resource
def load_llm(model_name):
"""Load and cache the language model."""
try:
pipe = pipeline("text2text-generation", model=model_name, max_length=512)
return HuggingFacePipeline(pipeline=pipe)
except Exception as e:
logger.error(f"Failed to load LLM: {e}")
st.error(f"Failed to load the model {model_name}. Please try again.")
return None
def process_pdf(file) -> List[Document]:
"""Process the uploaded PDF file."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
loader = PyPDFLoader(file_path=temp_file_path)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
documents = text_splitter.split_documents(pages)
return documents
except Exception as e:
logger.error(f"Error processing PDF: {e}")
st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
return []
def create_vector_store(documents: List[Document], embeddings):
"""Create the vector store."""
try:
return FAISS.from_documents(documents, embeddings)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
st.error("Failed to create the vector store. Please try again.")
return None
def summarize_report(documents: List[Document], llm) -> str:
"""Summarize the report using the loaded model."""
try:
prompt_template = """
You are an AI specialized in summarizing comprehensive reports with a focus on funding, finances, and global comparisons. Given the detailed report content below, generate a concise and structured summary using bullet points and emojis. The summary should highlight key funding figures, financial data, budget allocations, comparisons between regions, and notable insights about [FOCUS_REGION]'s role in the global context of [TOPIC].
Report Content:
{text}
Your summary should follow this structure:
Summary:
π° [TOPIC] Overview for [FOCUS_REGION]:
π΄ [FOCUS_REGION]'s Position in Global [TOPIC]:
π Total investment/funding: [amount]
π Breakdown of funding sources (e.g., government, private sector)
π [FOCUS_REGION]'s ranking in global investment
π Key statistics and figures
π΄ Financial Impact and Projections:
π Expected ROI or economic benefits
π Financial milestones or targets
π Impact on relevant areas
π΄ Global Comparison:
π [List of relevant countries/regions with their financial figures]
π Comparative analysis of [FOCUS_REGION] vs other major players
π΄ Budget Analysis:
π Major budget items
π Key budget allocations
π Year-over-year budget changes
π Comparison to industry benchmarks
π΄ Funding Strategies:
π Key funding mechanisms (e.g., grants, loans, public-private partnerships)
π Innovative financing approaches
π΄ Progress and Significance:
π Key achievements or milestones
π [1-2 concluding points about [FOCUS_REGION]'s role or significance in [TOPIC]]
Please ensure the summary is concise, informative, and easy to read at a glance. Use precise figures where available and highlight any significant financial trends or insights. The summary should provide a comprehensive overview of both the financial aspects and the broader context of [TOPIC] in [FOCUS_REGION].
"""
prompt = PromptTemplate.from_template(prompt_template)
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
summary = chain.invoke(documents)
return summary['output_text']
except Exception as e:
logger.error(f"Error summarizing report: {e}")
st.error("Failed to summarize the report. Please try again.")
return ""
def main():
st.title("Report Summarizer")
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
llm = load_llm(model_option)
embeddings = load_embeddings()
if not llm or not embeddings:
return
if uploaded_file:
with st.spinner("Processing PDF..."):
documents = process_pdf(uploaded_file)
if documents:
with st.spinner("Creating vector store..."):
db = create_vector_store(documents, embeddings)
if db and st.button("Summarize"):
with st.spinner(f"Generating structured summary using {model_option}..."):
summary = summarize_report(documents, llm)
if summary:
st.subheader("Structured Summary:")
st.markdown(summary)
else:
st.warning("Failed to generate summary. Please try again.")
if __name__ == "__main__":
main()
|