File size: 6,283 Bytes
b47040f
 
 
 
81cff83
 
 
 
b47040f
 
 
 
 
 
 
 
 
 
 
 
4ff5abb
b47040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81cff83
b47040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81cff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a31cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import tempfile
import logging
from typing import List
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "meta-llama/Meta-Llama-3.1-8B"

@st.cache_resource
def load_embeddings():
    """Load and cache the embedding model."""
    try:
        return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
    except Exception as e:
        logger.error(f"Failed to load embeddings: {e}")
        st.error("Failed to load the embedding model. Please try again later.")
        return None

@st.cache_resource
def load_llm(model_name):
    """Load and cache the language model."""
    try:
        pipe = pipeline("text2text-generation", model=model_name, max_length=512)
        return HuggingFacePipeline(pipeline=pipe)
    except Exception as e:
        logger.error(f"Failed to load LLM: {e}")
        st.error(f"Failed to load the model {model_name}. Please try again.")
        return None

def process_pdf(file) -> List[Document]:
    """Process the uploaded PDF file."""
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
            temp_file.write(file.getvalue())
            temp_file_path = temp_file.name
        
        loader = PyPDFLoader(file_path=temp_file_path)
        pages = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        documents = text_splitter.split_documents(pages)
        return documents
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
        return []

def create_vector_store(documents: List[Document], embeddings):
    """Create the vector store."""
    try:
        return FAISS.from_documents(documents, embeddings)
    except Exception as e:
        logger.error(f"Error creating vector store: {e}")
        st.error("Failed to create the vector store. Please try again.")
        return None

def summarize_report(documents: List[Document], llm) -> str:
    """Summarize the report using the loaded model."""
    try:
        prompt_template = """
        You are an AI specialized in summarizing comprehensive reports with a focus on funding, finances, and global comparisons. Given the detailed report content below, generate a concise and structured summary using bullet points and emojis. The summary should highlight key funding figures, financial data, budget allocations, comparisons between regions, and notable insights about [FOCUS_REGION]'s role in the global context of [TOPIC].
        Report Content:
        {text}
        Your summary should follow this structure:
        Summary:
        πŸ’° [TOPIC] Overview for [FOCUS_REGION]:
        πŸ”΄ [FOCUS_REGION]'s Position in Global [TOPIC]:
        πŸ“ Total investment/funding: [amount]
        πŸ“ Breakdown of funding sources (e.g., government, private sector)
        πŸ“ [FOCUS_REGION]'s ranking in global investment
        πŸ“ Key statistics and figures
        πŸ”΄ Financial Impact and Projections:
        πŸ“ Expected ROI or economic benefits
        πŸ“ Financial milestones or targets
        πŸ“ Impact on relevant areas
        πŸ”΄ Global Comparison:
        πŸ“ [List of relevant countries/regions with their financial figures]
        πŸ“ Comparative analysis of [FOCUS_REGION] vs other major players
        πŸ”΄ Budget Analysis:
        πŸ“ Major budget items
        πŸ“ Key budget allocations
        πŸ“ Year-over-year budget changes
        πŸ“ Comparison to industry benchmarks
        πŸ”΄ Funding Strategies:
        πŸ“ Key funding mechanisms (e.g., grants, loans, public-private partnerships)
        πŸ“ Innovative financing approaches
        πŸ”΄ Progress and Significance:
        πŸ“ Key achievements or milestones
        πŸ“ [1-2 concluding points about [FOCUS_REGION]'s role or significance in [TOPIC]]
        Please ensure the summary is concise, informative, and easy to read at a glance. Use precise figures where available and highlight any significant financial trends or insights. The summary should provide a comprehensive overview of both the financial aspects and the broader context of [TOPIC] in [FOCUS_REGION].
        """

        prompt = PromptTemplate.from_template(prompt_template)
        chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
        summary = chain.invoke(documents)
        return summary['output_text']

    except Exception as e:
        logger.error(f"Error summarizing report: {e}")
        st.error("Failed to summarize the report. Please try again.")
        return ""

def main():
    st.title("Report Summarizer")
    
    model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)

    uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")

    llm = load_llm(model_option)
    embeddings = load_embeddings()

    if not llm or not embeddings:
        return

    if uploaded_file:
        with st.spinner("Processing PDF..."):
            documents = process_pdf(uploaded_file)

        if documents:
            with st.spinner("Creating vector store..."):
                db = create_vector_store(documents, embeddings)

            if db and st.button("Summarize"):
                with st.spinner(f"Generating structured summary using {model_option}..."):
                    summary = summarize_report(documents, llm)

                    if summary:
                        st.subheader("Structured Summary:")
                        st.markdown(summary)
                    else:
                        st.warning("Failed to generate summary. Please try again.")

if __name__ == "__main__":
    main()